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Abstract

When individual outcomes depend on peer outcomes, treating an individual in a
network affects all connected individuals. This causes the absence of a control group
and threatens the validity of causal inference. Existing methods assume linear func-
tional forms and exogenous networks, or exclude the dependence on peer outcomes.
By introducing a nonparametric peer effect model, I prove that the treatment effect
is identified by comparing individuals with the same neighbors but different treatment
status, which does not rely on the above assumptions. Estimation is performed using
a combination of a kernel estimator, which relaxes the identical-neighbor condition in
finite samples, and the method of sieves. The consistency of the proposed estimator
is then established. Application of this method to an anti-violence campaign suggests
that the effect of the campaign on individual attitude is increasing in the average

neighbor attitude.
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1 Introduction

I study the identification and estimation of the treatment effect under network interference.
The interference operates through endogenous peer effects (Manski (1993)), allowing indi-
vidual outcomes to depend on peer outcomes. Treating an individual thereby affects every
other individual in a connected network, leading to the absence of valid control group. For
example, Cai et al. (2015) provide information on a weather insurance product to randomly
selected farmers in villages, who spread the information to their peers. However, one may
expect the communication process to continue and the treatment thus affects all acquain-
tances of the treated farmers. Comparing the outcomes of treated and untreated farmers
may give biased estimates of the treatment effect due to the informational spillover.

Existing methods related to this problem rely on strong assumptions. One approach
is to assume linearity and construct instrumental variables (IV) under the assumption of
exogenous networks (Bramoullé et al. (2009)). However, the linearity assumption is restric-
tive, and also, people with a stronger desire for information may form links selectively, which
causes the network to be endogenous. Banerjee et al. (2024) show that the network structure
can be directly affected by treatment assignment, which also points towards the endogene-
ity of networks. Another approach is to assume that the spillover propagates only in short
distances and depends only on the treatment assignment. However, in typical models of en-
dogenous peer effects, the spillover propagates to distant agents and depends on the shocks
of other agents. More detailed discussions are in Section 2.

To address this problem, I construct a nonparametric peer effect model and define the
treatment effect as the difference in expected outcome conditional on the average outcome
of peers. Under the additively separable error assumption, I provide a novel identification
argument of the proposed treatment effect by comparing individuals with the same neighbors
and different treatment status. This argument allows for endogenous networks and the
dependence of the treatment assignment on networks, thereby allowing for some endogeneity
of the treatment. A consistent nonparametric estimator of the treatment effect is then
constructed. In more detail, the paper proceeds in three steps.

In the first step, I model the individual outcome as a nonparametric function of the
average neighbor outcome, treatment status, and observed characteristics. The spillover is
modeled as the average neighbor outcome, a low-dimensional statistic, which is similar to the
literature on peer effects.! The flexible functional form allows for rich interaction between the

treatment and spillover, and individual heterogeneity in terms of observed characteristics. I

'For example, the average is adopted in Calvé-Armengol et al. (2009), maximum appears in
Tao and Lee (2014), minimum is modeled in Bietenbeck (2020), a CES-type aggregator is studied
by Boucher et al. (2024), and the quantile is analyzed by Houndetoungan (2025).



then define the treatment effect of interest as the difference in expected outcome, fixing the
level of average neighbor outcomes and observed characteristics. This relates to the optimal
treatment assignment and reveals the relationship between treatment and spillover. For
example, when the treatment effect decays with the average neighbor outcome, substitution
is likely present.

In the second step, I prove that the proposed treatment effect is identified by compar-
ing individuals with the same neighbors but different treatment statuses. The endogeneity
of the average neighbor outcome intertwines with the nonparametric functional form, pos-
ing identification challenges. This is further exacerbated by the concern for endogenous
networks, which limits our ability to find IVs. I solve this problem by comparing individ-
uals whose shocks are correlated with the average neighbor outcome in the same manner.
More specifically, under the additively separable error assumption, I show that the average
neighbor outcome depends on the shocks of these individuals through a symmetric statistic.
The equality in conditional mean of the shocks is then established, leading to identification.
Since I am comparing individuals endogenous in the same way, the method can accommo-
date the endogeneity of networks, individuals characteristics, and the treatment assignment
as a function of the endogenous networks and characteristics.

In the third step, this paper provides a nonparametric estimator of the treatment effect
and establishes its consistency. The identification argument compares individuals with the
same neighbors, which may lead to few observations in finite samples. However, standard
multivariate kernels provide insufficient smoothing because the dimension of the set of neigh-
bors grows at the same rate as the sample size. I tackle this problem by smoothing with
respect to a low-dimensional variable defined as the ratio of the number of different links to
the degree. Next, I relate this ratio to the degree of endogeneity, thereby quantifying the
order of the bias from smoothing. A kernel estimator is then adopted to relax the same
neighbor condition in finite samples, and the method of sieve is used to flexibly model the
treatment effect as a function of the spillover and individual characteristics. Another chal-
lenge is the dependence across observations due to the endogenous peer effects. I solve this
by adapting the framework of network -dependence studied in Kojevnikov et al. (2021).
The consistency of this estimator in L?-norm is established.

The performance of the estimator is tested in simulations. Results show that the L? loss
decreases with the sample size, which confirms the consistency of the estimator. Although
theory predicts that small bandwidth reduces bias, simulation result suggests that it may
lead to higher L? loss, potentially caused by larger variance. Fitting too many basis function
may also increase the loss. The above findings are most pronounced near the boundary,
which is likely due to the small number of observations near the boundary.

The method is then applied to the data from Paluck et al. (2016) who studies the effect



of anti-violence campaigns in schools. An index of individual attitude against violence is
constructed as the outcome variable. The index is constructed such that students with more
optimistic views of the degree of violence in their schools and more positive attitude towards
anti-violence acts get higher score. The result suggests that the treatment effect is increasing
in average neighbor attitude, which can be viewed as complementarity. Students may be
further encouraged by their friends having more positive attitudes.

The paper is organized as follows: Section 2 reviews the related literature. Section 3
describes the model, establishing the existence and uniqueness of the reduced form and the
structure of the reduced form. Section 4 studies the identification of the causal effect of
interest. Section 5 discusses the estimator for the causal effect and its consistency. Section
6 provides simulation evidence and Section 7 applies the method to empirical data. Section
8 concludes. The figures and tables are collected in Appendix A. The technical lemmas and

proofs of the results are in Appendix B.

2 Related Literature

This paper is related to the strand of literature studying the identification in peer effects
models using mean restrictions. Using a linear-in-means model, Manski (1993) argues that
the reflection problem hinders identification of group effects while the coefficients of indi-
vidual characteristics directly affecting outcomes are identified. This paper shows that the
identification of the effect of individual characteristics (treatment) is still valid in more flex-
ible functional forms. My identification argument is similar to Graham and Hahn (2005),
who show that the endogenous peer effect acts like a group fixed effect when all nodes are
connected within a block. I extend this idea to cases where networks are not block-diagonal
by finding nodes with the same neighbors. Bramoullé et al. (2009) construct IV using ex-
ogenous characteristics of two-step away neighbors to identify the endogenous peer effect,
which is based on the assumption of exogenous networks. I relax this assumption, but only
identify the treatment effect instead of the endogenous peer effect. Griffith (2024) solves
the endogeneity of the network and identifies the endogenous peer effect by characterizing
the endogeneity as an omitted variable problem. He constructs a parametric model of net-
work formation and identifies the latent variables that affect both network formation and
outcome. I consider a more flexible functional form and remain agnostic about the network
formation process, but I only identify the treatment effect. In terms of modeling individ-
ual heterogeneity, Carrell et al. (2013), Masten (2018) and Griffith (2024) construct linear
models with random coefficients to model heterogeneity. In contrast, the heterogeneity in
this paper stems from the interaction between treatment, spillover, and observed character-

istics under flexible functional form. Other articles have considered identification through



variance restrictions in the linear-in-means model (Graham (2008), Rose (2017)), and using
panel data structure (Manresa (2013), Miraldo et al. (2021)). Rose and Yu (2022) consider
misspecified peer groups. My approach imposes mean restrictions and uses cross-sectional
data.

The interference structure studied in this paper bears resemblance to the literature on
equilibrium treatment effect. Munro et al. (2025) and Munro (2025) study this problem in
centralized markets. In Munro et al. (2025), agents affect each other through the market
clearing price whereas the channel of spillover in my paper is the average neighbor outcome.
They study large markets and use mean-field approximation, while generating price varia-
tions through augmented experiments. This resembles a dense network where every agent
affects each other through the price. I do not directly restrict the density of the network.
However, when the network is dense, variations in the average neighbor outcome can be
limited and the treatment effect is only identified on a few values of the average neighbor
outcome. The setup in this paper is also related to Menzel (2025) who studies marginal
effects conditional on the treatment status of neighbors that are two or more steps away. In
contrast, treatment effect in my paper conditions on the average neighbor outcomes, which
is assumed to be a sufficient statistic for the treatment status of other connected individuals.

My work also contributes to the statistics literature on causal inference under interfer-
ence. While most of this literature assume spillover through treatment status, I analyze
the scenarios where spillover depends on outcome. The important distinction is that treat-
ments are typically exogenous, while outcomes are endogenous, which demands different
techniques to handle. Hudgens and Halloran (2008) construct average direct and indirect
effects in two-stage, hierarchical randomized experiments, and the inference results are pro-
vided by Tchetgen and VanderWeele (2012). Under greater generality, Manski (2013) and
Aronow and Samii (2017) capture the interference through an arbitrary known function of
the treatment vector, which is referred to as the exposure map (or effective treatment). The
function of treatment vector is typically motivated by counterfactual policies, for example,
the share of treated neighbors. This leads to natural definitions of direct (treatment) and
indirect (spillover) effects. Leung (2020) applies this idea to network problems and assumes
that the exposure map depends on the share of treated neighbors. Although the direct effect
is easy to define, the indirect effect often differs across contexts and is sensitive to assump-
tions. Hu et al. (2022) provides a form of the indirect effect that requires less assumptions
and is sensible under different kinds of interference pattern. Li and Wager (2022) build on
this and provide estimation and inference results using graphon. Wang et al. (2025) study
a similar problem in spatial contexts. Some recent studies relax the assumption of correct
specification of the exposure map (Sévje et al. (2021), Leung (2022), Sdvje (2024)). My

work can be viewed as incorporating endogenous variables into the exposure map. To better



capture endogeneity, sampling-based uncertainty is adopted in this paper to capture the
selection issue while design-based uncertainty is assumed by most of the literature.?

In terms of proof strategy, this paper is related to the work by Sasaki (2025) on the
consistency of GMM and M-estimators for finite-dimensional parameters in the context of
network t-dependence (Kojevnikov et al. (2021)). However, this paper focuses on infinite-
dimensional parameters but considers only a special type of M-estimator.

Finally, this paper relates to the strand of literature on information provision. Recent
studies have examined information provision in diverse domains including insurance (Cai
et al. (2015), Chemin (2018)), gun violence (Wood and Papachristos (2019)), corporate tax
visits (Boning et al. (2020)), new technology (Beaman et al. (2021)), property rights (Aberra
and Chemin (2025)), biased belief (Wagner et al. (2025)). I contribute to the literature
by providing a new methodology to study treatment effect under information provision.
Applying my method to the anti-violence campaign conducted by Paluck et al. (2016), I
provide evidence of the nonlinearity of the treatment effect of anti-violence campaign, which

is increasing in the average neighbor outcome.

3 Setup

3.1 Model

For any matrix B, B;; denote the (i, j)-th entry of B. For a random variable W, let supp(W)
denote its support. Bold-faced letters are used to denote vectors. For example, Y denote
the vector (Y3,---,Y,)". Functions with vector-valued outputs are also denoted in bold face.

Assume that the researcher observes n agents represented as nodes in a network with
adjacency matrix A. Let A denote the row-normalized adjacency matrix. Let Y; € supp(Y) C
R be the outcome of node i, T; € {0,1} be the treatment status of node i. Also let X; €
supp(X) € R be the characteristics of node i and v; € supp(v) € R% be the unobserved
shock received by node . It is assumed that the researcher observes {Y;, T;, X;}"; and the
adjacency matrix A. The focus of this paper is on experimental contexts and the treatment

T is assumed to be randomly assigned.

Example 3.1 Cai et al. (2015) provide information on a weather insurance product to
randomly-chosen farmers in rural Chinese wvillages. The information provision takes the
form of information sessions where staffs convey important details about the product includ-
ing price and coverage. A farmer i is treated (1; = 1) if he/she attends the information

session. One outcome variable (Y') of interest is the knowledge of farmers regarding the

2See Abadie et al. (2020) for the difference in sampling-based and design-based uncertainty.



insurance product. This is measured by the share of correctly answered questions about the
product. Ezamples of individual characteristics (X ) include education level, age, income,
past experience of drought. The network adjacency matriz A is measured by asking the farm-

ers to list their friends. A farmer i is connected to another farmer j (A;; = 1) if i lists j as

his/her friend.

To model the dependence on peer outcome, I consider the following nonlinear peer effect

model:
Vi: Yi=g9(D;,T;, Xi,v)

D; = nlzn:AZ]Y] n; = zn:Aij (1)
i 5o =

The knowledge of node ¢ (Y;) is affected by the treatment status of i (7;), the average
knowledge of the neighbors (D;), and the characteristics of i (X;). However, D; is affected
by the knowledge of the neighbors’ neighbors. Therefore, the knowledge of node ¢ affected by
every other node that can reach i. This captures knowledge transmission and its dependence
on the network structure. The model is a continuous analogue of the contagion model where
the transmission of actions occurs if the share of such action among neighbors exceeds a
certain threshold (Morris (2000), Centola and Macy (2007), Centola (2010)).

Example 3.2 Let Y; be a binary variable. Y; = 1 represents taking a certain action. The
contagion model can be written as Y; = 1{D; > 7%} where n; = Zj A;j is the degree of node
1 and D; = ni Zj A;;Y; is the share of neighbors taking the action. « is contagion threshold
for the number of sources. o =1 is the simple contagion model and o > 2 captures complex
contagion. We could also allow for the threshold o to differ across individuals. For instance,
a; = p(X;, Ti,v;) allows the threshold to depend on the characteristics, treatment status, and

unobserved shocks of that individual. A treatment that subsidizes the action would reduce the
threshold.

The contagion model is typically adopted in the literature to capture the spread of actions
in a network. A treatment that encourages some people to take the action could lead to a
spread of adoption. However, the outcomes are likely continuous when studying information
provision. As an example, Cai et al. (2015) measures the knowledge of farmers about
an insurance product by computing the share of correctly answered questions about the
product. The contagion model relates to the model in Equation 1 if we take ¢ = g1 o ¢
where ¢1(y) = 1{y > 0} and ¢2(d,t,z,v) = d — p(t,z,v) for some threshold function p().

The next example illustrates the interaction between the treatment and spillover.

Example 3.3 Consider g(D;,T;, X;,v;) = (61 D; + 52T + X[53) + v;. Assume that § is

a strictly concave function and i > 0,8y > 0. Being treated (T; = 1) improves one’s
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knowledge. Having more knowledgeable neighbors (higher D;) diminishes this effect. The
specification adopted in Cai et al. (2015) assumes that § is a linear function which implies

constant treatment effect.

The literature on exposure maps has largely assumed that the spillover depends on some
low-dimensional statistics on the treatment assignment. The following example compares

this modeling assumption to the one in Equation (1):

Example 3.4 Consider an alternative model
Vi: Y, =g(D;,T;, X, v;)

v =1 j=1

This equation replaces the average outcome (D;) in Equation (1) by the average treatment
status (D} ). Equation (2) states that individual outcome depends only on the treatment status
of connected individuals. However, the peer effects model in Equation (1) allows individual
outcomes to depend on the treatment status of all other individuals when the network is
connected. The more important difference can be seen from a treatment assignment problem.
Assume that we are treating half of individual i’s neighbors. FEquation (2) states that the
effect of treating individual © does not depend on the outcome of i’s neighbors. In the context
of Cai et al. (2015), this means that the understanding of individual i does not depend on
the understanding of i’s neighbors once the share of treated neighbors is fized. However, the
knowledge spillover is more likely to depend on the understanding of the neighbors instead of
Just their treatment statuses. In contrast, Equation (1) allows for the dependence on outcome,
and the effect of treating individual © still depends on the knowledge of i’s neighbors, even

after conditioning on the share of treated neighbors.

3.2 Causal Effects

Equation (1) naturally leads to the following causal objects:

r(d, z) = E,g(d,1,z,v) — g(d, 0, z,v)] (3)
mo(d,d;t,x) = E,[g(d,t,x,v) — g(d', t,z,0)] (4)

The first term 77(d, x) is the difference in counterfactual outcomes under different treat-
ment status, conditional on the observed characteristics and the average knowledge of the
neighbors. The causal effect 7 can be viewed as evaluating the immediate impact of treat-

ment at a particular level of spillover, sharing similar intuition as the Average Partial Causal



Figure 1: Causal Effects

Effect in Bugni et al. (2025). The causal effect in Bugni et al. (2025) is ‘immediate’ as it
does not account for adjustment of actions induced by the treatment. The effect 7 is ‘im-
mediate’ as it does not account for the subsequent informational spillover between nodes. A
similar nonlinear treatment effect is considered in the shift-share design by Garzon and Pos-
sebom (2025) where the nonlinearity is with respect to the continuous treatment intensity.
The identification argument in this paper can also accommodate continuous treatment (77;)
but the major focus is on the nonlinearity with respect to the spillover. The second term
Tp(d,d’;t, x) is the spillover effect. It measures the difference in expected outcome under dif-
ferent levels of average neighbor outcome. To better understand the causal effects, consider
assigning treatment to an individual ¢ in network. The treatment leads to an immediate
increase in ¢’s knowledge measured by 7. Through communication, ¢ spreads the knowledge
to the neighbors, which measured by 7p. This is depicted in Figure 1.

The causal effects are useful for three reasons. First, the value of 77 (d, ) at different val-
ues of d provides information on substitutability / complementarity between the information
obtained from neighbors and the treatment. If the 7r(d, z) is decreasing in d, substitution
between the informational treatment and spillover is likely present. Second, the treatment
effect and the spillover effect together enables the measurement of the impact of a counterfac-
tual treatment assignment to another network, which is made precise in Example 3.5. Third,
under some particular network structure, 7r(d, z) along determines the optimal treatment

assignment, which is illustrated in Proposition 3.1.

Example 3.3. (Continued) The causal effects take the following form:

mr(d, x) = §(frd + Bo + ' B3) — G(Brd + 2’ B5)

5
mp(d,d'st,x) = G(Brd + Pot + 2'B3) — §(frd' + Pat + 2'53) )

When g is a concave function and [y, > 0, 7r(d, z) is a decreasing function for any given
x. In this case, treatment and spillover are substitutes for knowledge acquisition. A sparse
assignment may be optimal when treating a fized number of nodes. If instead g is conver,

then the assignment should be clustered to utilize the complementarity.



Example 3.5 Consider a network of n' nodes and the row-normalized adjacency matriz A.
The vector of initial knowledge level is Y. Consider assigning a vector of treatment t. Let
Y™ be the equilibrium knowledge after the treatment t. This example decomposes Y* —Y as
a sum of the causal effects 7r,mp.

For simplicity, ignore the covariates x. Also, assume that g(d,t,v) = g(d,t) +v. This
assumption s the key to identification which is later imposed in Assumption 4.1. Let ®

denote the point-wise multiplication. Define the following objects:

0 =g(AY,0,v) =Y
1y =g(AY,t,v)
o =8(AY (s-1),t,v) s>2

A(1) = Yv(l) - Y‘(O) = g(AYu t, V) - g<AY7 0, V) = g(AYv t) - g(AYu 0) = TT(AY> Ot
A(S) = Y(S) — Y1) = g([lY(s_l), t) — g(AY(S_g), t)=17p (AY(S_U, AY(S_Q); t) s> 2
(6)
As will be shown in the proof of Proposition 3.2, the contraction mapping theorem ensured

by Assumption 3.2 implies that:

~Y = ZA r(AY) @t+ZTD (AY (1), AY (5_9); t) (7)

s=2

The term Ay is the immediate change in knowledge induced by the treatment assignment
while Ay for s > 2 are the changes in knowledge due to the spillover effect. The above
process can be viewed as an infinite-step adjustment to the new equilibrium where s represents
the step. Initially, the treatment assignment induces an immediate impact Agy. In step 2

and onward, the knowledge level in the network keeps adjusting through the spillover effects.

More can be said regarding the optimal assignment under specific network structure
and sign restriction of the treatment effect (Assumption 3.3, 3.4 below). Formally, consider
the problem of assigning treatment to m < n’ individuals in the network with the goal
of maximizing the average outcome Z;il Y;. This can be viewed as a result of budget-

constrained maximization problem where treating each node is equally costly.

Proposition 3.1 Continue with the setup in Example 5.5. Assume that Assumption 5.2,
3.3, 3./ hold. Further assume that the network A is fully connected: /_lij = T% for any i,j.
For two treatment tq,t,, denote the result equilibrium knowledge Y7,Y5. Then the following
holds: 1'Y; > 1'Y3 if and only if 7r(AY)'ty > 7p(AY)'t,.

This result suggests that the determination of optimal treatment assignment in a network

boils down to the comparison of 7 when all agents are connected to each other within a
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block. This highlights the importance of 7r.

3.3 Existence and Uniqueness of the Reduced Form

The data (X, T, v, A) is assumed to be drawn from an underlying distribution. Restrictions
will be placed on this underlying distribution when it comes to the identification part. The
goal of this current section is to establish the existence and uniqueness of the reduced form

equation. To proceed, I make the following assumptions:

Assumption 3.1 The true data generating process for the knowledge vector Y is:
VZ : E:g(DlaﬂaXlavz)
1 (8)
TR N

where g : G — supp(Y) is some measurable function and G is a polish space such that
supp(Y') x {0,1} x supp(X) x supp(v) C G.

Assumption 3.2 There exists a constant k& € (0,1) such that 559(D;, T;, X;,v;) < k < 1
for all realization of D;,T;, X;, v;

This assumption restricts the strength of knowledge spillover and prevents explosive be-
havior. In words, the assumption requires that if the average knowledge of node 7’s neighbors
increases by a unit, the resulting increase in i’s knowledge is less than one unit. If the increase
is more than one, treating every node could lead to unbounded knowledge. This assump-
tion restricts the influence of distant nodes and is important to establish the 1-dependence
condition for the consistency of the estimator. The following two examples illustrate this

assumption under the linear-in-means model and the model considered in Example 3.3.

Example 3.6 Assume that Y; = g(D;, T;, X;,v;) = 51 D; + o1 + X, 83 + v; holds for all .
The equation can thus be written in vector form: Y = 51D + BT + X85 +v and D = AY.
The assumption that |%g(Di, T;, Xi,v:)| = |B1| < 1 implies that the matriz I — (A is diagonal
dominant, hence invertible. The unique reduced form is Y = (I — Bfl)’l(ﬁgT + XB3 +v).
When |B1| > 1, the system becomes explosive.

Example 3.3. (Continued) The restriction that 25g(D;, T;, Xi,v;) < & < 1 amounts to
]ﬁlﬁg(y)\ <k < 1 for all values of y.

Assumption 3.1 states the data generating process for Y as a solution to a system of
equations and Assumption 3.2 implies that such solution exists and is unique, which is
formalized by point 1 of Proposition 3.2. The following assumptions add additional sign

restrictions on the structural model.
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Assumption 3.3 ¢(D;, 1, X;,v;) — g(D;,0, X;,v;) > 0 for all realizations of D;, X, v;

Assumption 3.4 For any value d > d', g(d, T;, X;,v;) — g(d', T;, X;, v;) takes the same sign
as g(D;, 1, X, v;) — g(D;, 0, X;,v;) for all realizations of T;, X;, v;

Assumption 3.3 is a monotonicity assumption on the treatment effect in the knowledge
equation allowing for heterogeneous effects. Assumption 3.4 restricts the sign of the effect
of the average knowledge of the neighbors to be the same across different values, and the
same as the treatment effect. For example, if being treated increases knowledge, having
more knowledgeable peers should also increase knowledge. As a side note, the sign can
be negative in Assumption 3.3, 3.4, provided that they are the same. This assumption is
reasonable in the informational treatment context since communication between agents and

the information provision are unlikely to deprecate understanding.

Example 3.3. (Continued) Assumption 3.3 can be satisfied if §(.) is monotonic. Assump-
tion 3.4 can be satisfied if g(.) is monotonic and [y, B2 take the same sign.
The following proposition establishes the existence of a unique reduced form, which jus-

tifies Assumption 3.1 and is important for the subsequent analysis of the identification.

Proposition 3.2 Let g : supp(Y) x {0,1} x supp(X) x supp(v) — supp(Y) be some un-
known measurable function as in Equation (8). Assume Assumption 3.2 holds. The following

statements are true:

1. The simultaneous equation system stated in Equation (8) admits a unique solution:
Y =r(T,X,v) where r : {0,1}" x supp(X)"™ x supp(v)"” — supp(Y)" is some measur-

able function.

2. Let r; be the i-th entry of r in the point above. If Assumption 3.3, 3./ also hold,

Y, = (T, X, v) is non-decreasing in T; for any j and strictly increasing for some j.

Furthermore, the above conclusions still hold if D; is replaced by ., w;Y; where w; is such
that w; € [0,1] and ), w; = 1.

The above proposition suggests that the equilibrium knowledge Y can be expressed as a
function of {T, X, v}. The identification results in the subsequent section use this property

to separate restrictions on v;, v; from the restrictions on {T}., Xy, vk}k#,j.

Remark 3.1 From the above proposition, it follows that the following system of knowledge

11



equations also admits a unique reduced form:

Vi : Y;:g(DjaTzaXHUZ)
1

Df = Aiwi (X5, T, 0;)Y;
i Zinjwi(Xj,Tj,’Uj); jwi( X5, Ty, v5)Y;

wi(X;,T;,v;) >0

where w;(X;,v;) represents the weight placed by i on neighbor j, which depends on both
observed and unobserved characteristics. This system of equations allows each agent i to
place different weights on the knowledge of different neighbors (Griffith (2024)).

4 Identification

The key challenge to identification is the correlation between D; and v;. Consider the
specification Y; = g(D;, T;, X;) + v;. The naive difference E[Y;|D; = d,T; = 1,X; =
x] — E[Y;|D; = d,T; = 0, X; = z] does not identify 7r(d, z) because the conditioning events
reflect Ejv;|D; = d,T; = 1, X; = 2| # Ev;|D; = d,T; = 0,X; = z]|. To see this, consider
the case depicted in Figure 2 with two pairs of links (i, k), (,1) and ¢ being the only treated

individual (colored in red). Assume that the outcome follows a linear-in-means model:
Y; = Bo+ BiDi + BT + Xifs + v (9)

Assume that the treatment and spillover effects are both positive (f; > 0 and 3y > 0). The
naive difference estimator is comparing nodes ¢, j with D; = D;, X; = X, T; # T;. However,
D; is an increasing function of Tj, v;, which implies that v; < v;. In words, an individual is
more knowledgeable if he/she is treated or has higher level of shocks. This then increases
the average neighbor knowledge D; through spillover. However, if i, j have the same average
neighbor knowledge but different treatment status, the shocks of ¢ must be lower. This is
the problem of endogenous peer effects.

If the model is fully parametric as in Equation (9), and the network is exogenous, in-
strumental variable (IV) approach using the share of treated neighbors as the instrument
would suffice. Under flexible functional form, one may still use nonparametric IV (Newey
and Powell (2003)) or generalized IV (Chesher and Rosen (2017)) to relax the parametric
structure. However, when the network is endogenous, it is in general hard to find suitable
instruments. Endogeneity of the network is a valid concern because individuals with better
understanding may form links in different ways than their less knowledgeable peers.

This paper takes another route to address this problem. Under the additively separable
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structure, the essential condition needed is E[v; —v;|D; = D;,T; = 1,1T; = 0, X; = X;,E] =0
for some conditioning event £.% Suppose that the event € is such that E[v;—v;|D; = D;,T; =
1,7, =0,X; = X;,&| = Elv; —vj|s(vi,v5),T; = 1,T; = 0,X; = X;,&] where s(v;,v;) is a
symmetric function. If in addition that v;,v; are i.i.d. conditional on {7; = 1,7; = 0, X; =
X;, &}, it is true that Efv; — vj|s(vi,v;),T; = 1,T; = 0,X; = X;,&] = 0, which is proven
in Lemma B.3. The overall argument is that conditional on the event &£, the endogenous
variables D;, D; depend on v;, vj only through a symmetric function s(v;, v;) = s(v;, v;). Since
v;,v; are conditionally i.i.d., their expectation remains the same after further conditioning
on a symmetric variable s(v;, v;).

The above analysis immediately highlights the relation between the method in this paper
and the control function approach (see Wooldridge (2015) for a review). The above argument
can be understood as follows: conditional on &£, the symmetric quantity s(v;, v;) is a control
function for D;, D;. However, this paper does not estimate this quantity, in contrast to the
control function approach (i.e. Newey et al. (1999)). This is because the control function
is a symmetric quantity, which suffices to establish the required equality in conditional
expectation. This is also a weaker result compared to the control function approach, which
typically establishes conditional exogeneity.

It remains to find the event £. Recall that Yy, = §(Dy, Tk, Xx) +vx depends on v; through
Dy, and the dependence of D), on v; happens through the quantity Ay;v;.* This implies that
D;, D; depends on v;,v; through the vector {Ayv; + Ajvjbirsiy. If Ap = Aygj for all k, it
follows that Dy depends only on the quantity v; 4+v;, which is a symmetric function of v;, v;.
One candidate for the event & is thus { Ay; = Ay, for all k£}. This ensures that D;, D; depends
on v;, v; through a symmetric function s(v;, v;) = v; +v;. The idea is illustrated in Figure 3.

The two individuals 7, j are such that Ay; = Ayj, Ay = Aj;. The above argument ensures that

3To see this, E[Y; — }/j‘Dz =D;=d,1T;,=1T; =0,X; = X, = z, & =g(d,1,z2) — g(d,0,z) +
E[Ui —Uj|Di = Dj = d,ﬂ :~ 1,7} = O,X.:l = Xj = l‘,g]
4To see this, Dy = > g AkgYq = 2, Akglg(Dy, Ty, Xg) + vg).
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Elv; —v;|D; = D;,T; = 1,T; = 0, X; = X;] = 0 and thus provides the identification result.

This intuition is formalized by Proposition 4.1 below under the following assumptions:

Assumption 4.1 For all i:
1. Y; = g(Dy, Ty, Xi,v:) = g(Dy, Ty, X;) + v
2. v; L (T,X_;,v_;) conditional on X;, {Axi}7_,
3. v; L {Agu}iei conditional on X, {Api}r_,

4. v;,v; are identically distributed conditional on X; = X;, Ay = Ayj for all k

Assumption 4.1 has three components. The first assumption on additive separability
restricts the degree of unobserved heterogeneity, excluding random coefficients on treatment
T;. This paper focuses on the heterogeneity of the treatment effect across different levels of
average neighbor outcomes, rather than the heterogeneity of unobserved characteristics.

The second part is a conditional exogeneity assumption. The conditional exogeneity
of T allows the treatment assignment to depend on individual characteristics and network
structure but not unobserved shocks. The conditional exogeneity of {Ay}iz;, which is the
adjacency matrix A without column ¢, is a bit subtle. Under undirected network, this as-
sumption says that v; is uncorrelated with the link structure of other individuals, conditional
on 7’s link structure. This allows for A, to depend on for example, Ay;, Aj;, which represents
a taste for transitivity. However, under undirected networks, this assumption implies that
v; only affects Ag; but not A;.. In words, v; only affects if others link to ¢ but not whether ¢

link to others. The following example illustrates this possibility.

Example 4.1 An individual k obtains utility Uy = p(vi, Xy, Xi) — ¢ from linking with i.
The part p(v;, X;, Xi) represents the benefit of linking with i and is characterized by the
characteristics of i (both observed and unobserved). The term c is a cost of forming links.
The link Afki] is formed according to a threshold-crossing rule Ay = 1{Uy; > €} where €

is a random shock. As a result, v; only affects Ag; but not Ay..

The third part requires that the shocks be i.i.d. conditional on X; = X, Ay; = Ay, for all
k. This allows the underlying network formation process to be driven by some unobserved
heterogeneity correlated with v;, provided that such heterogeneity is the same across nodes
sharing the same neighbors. This shares similarity with the model in Auerbach (2022).
However, notice that there is no restriction imposed on the level of the first moment of
v; (i.e. Efv;] = 0). This is because the identification argument relies on taking differences

(Y;—Y;) and is unaffected by the levels of E[v;] provided that it is common across individuals.
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Proposition 4.1 Let Assumption 3.2, J.1 hold. Then the treatment effect mr(d,x), for
arbitrary (d, x) in the support, is identified by the following equation:

TT(d, LE)

g(d,1,z) — g(d,0,x)

(10)
=FElY, = Yj|A = Ay VK, T, =1,T; =0,D; = D; = d, X; = X; = «]

The identification argument takes the form of a simple differencing argument. In undi-
rected networks, it is the difference in expected outcome between individuals of the same
neighbors and characteristics but different treatment status. One implication is that the
result can be extended to observational studies if the assumption of selection on observ-
ables holds. Essentially, the required condition is that among the individuals with the same
neighbors and characteristics, the treatment is as if randomly assigned.

The result shares similar intuition as Zeleneev (2020) and Auerbach (2022). Zeleneev
(2020) controls for unobserved heterogeneity by controlling for the residuals. In the model
studied by Auerbach (2022), individuals with the same link structure have the same unob-
served characteristics. Controlling for link structure solves the endogeneity problem created
by the unobserved characteristics. The conditioning event of Ay, = Ay; for all k also con-
nects to the identification results in Graham and Hahn (2005). They show that group
average outcome acts like a group fixed effect, which disappears when differencing within
group. In their setup, every individual is connected to every other individual in the group.
This implies Ay; = Ay; for all k if 4, j belong to the same group. This identification idea is
also broadly related to the papers that control for unobserved heterogeneity using specific
network structures (Graham (2017), Gao (2020), Gao et al. (2023)).

The conditioning event Ay, = Ay; for all k if 4,7 may be justified by certain network
formation models. The most notable example is a special case of the stochastic block model
where P(A;; = 1) = p > 01if 4,5 belongs to the same group and 0 otherwise. Assuming that
the group size is bounded, the conditioning event is observed more frequently as the number
of blocks tends to infinity, which is inherently the ‘many network asymptotics’. One caveat
is that this conditioning event has different implications depending on whether self-links are
allowed (i.e. A; = 1). If self-links are ruled out, the event implies that 7, j cannot be linked,
as in Figure 3.

The identification argument can be applied to both directed and undirected networks.
In undirected networks, Ay, = Ay; implies that A;;, = Ajj, which leads to D; = D;. Thus,
the above argument cannot identify the spillover effect g(d,t,z) — g(d',t,z) in undirected
networks due to the lack of variation in D. In contrast, the argument can be applied directly
to identify the spillover effect in directed networks because Ay; = Ag; does not imply that

Aip = Aji, leading to variation in D; — D;. This is shown in Corollary 4.1.
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Corollary 4.1 Let Assumption 3.2, 4.1 hold. Then the spillover effect Tp(d,d’;t, x) under
directed networks, for arbitrary (d,d',t,x) in the support, is identified by the following

equation:

7_D((17 d/; t? w) = g(d7 t? x) - g(d/7 t? w)

(11)
:E[Y; _Yy‘Akz = Akj Vk,T'Z = 1,71] = O,l)Z :d,Dj = dl,Xi :Xj :QZ’]

5 Estimation in Undirected Networks

This section constructs a nonparametric M-estimator of the treatment effect based on the
identification argument in Proposition 4.1, and establish its consistency. Proposition 4.1

shows that {77 (d, z)} ) is identified through a set of moment restrictions.

E[K —Y; —TT(d,$)|Aki = Akj Vk,ﬂ = 177} :O,Dj = Dz :d,XZ :Xj :ZE] = 0 ‘v’(d,x)
(12)

Although this may be estimated by applying kernel-based methods, the number of obser-
vations satisfying D; = D; = d can be small. For the observed characteristics X, random
sampling guarantees that there will be samples with X close enough. In contrast, D is an
equilibrium quantity with complicated dependence on {T, X, v} and the network structure
A. Random sampling may not be able to guarantee enough samples with D being close.
This relates to the problem of ‘thin sets’ in Khan and Tamer (2010) and can lead to slow

convergence.

5.1 Estimator

Since Equation (12) conditions on the realization of D;, X;, the result also holds by interacting

with a measurable function m(D;, X;). For all values of (d, z):

E[(Y; — Y; — TT(d, Zlﬁ'))m(d,[ﬂ)'A]ﬂ = Akj Vk‘,T‘Z = 1,7} = O,Dj = DZ = d,Xl = Xj = ZE] =0
(13)

Since the above holds for all values of d, x, integrating out (d,x) yields:

This leads to the following equivalent characterization of 77:

16



Corollary 5.1 Under the assumptions of Proposition /.1, the following holds:

qe
(15)
where Q is the space of square-integrable functions.

To see the connection, the objective function in Equation (15) can be expanded as:

B |0 ¥, - a0, X))

A]ﬂ:AkJ Vk,TlL: 1,7—} :O,Xz _X]:|

=F {(TT(D“ X;) + v —v; —q(D;, Xz'))2

AklIAkJ Vk,ﬂ = 1,7} :O,XZZXJ:|

=F {(TT(DM Xi) = q(Di, X:))* + (v — v;)°

Aki - Akj Vk7ﬂ - ]-7T'J - OJXZ = XJ:| (16>

+ 2E |:(TT(D“XZ) — q(D’UX’L)) (Ui — Uj) Aki = Akj Vk’,n = 177} = O,XZ = X]:|

(. /
-~

=0

where the cross-term vanishes due to Equation (14). Also, (v; — v;)? is independent of
the choice of ¢q. If the space of function Q is approximated by a linear sieve space (i.e.
¢(Di, X +1i) = o8 4,b,(D;, X;) for some basis functions {b,}%,), the coefficients v, can
be estimated directly through least squares, easing the computation.

This leads us to define the population objective function as

L(q) = E (TT(Di,Xz‘) — C](DZ,AXVZ))2 + (Ui — Uj>2 Alm = Akj \V/k?,T‘Z = 1,1—; = O,Xl = Xj

(17)

The relevant part for the minimization problem is (77(D;, X;) — q(D;, X;))*>. The term
(v; —v;)? acts as a level-shifter that is independent of the choice of ¢(.). As a result, this
term can be omitted.

Let b denote the bandwidth and K, (‘%) be a kernel applied to the difference between
the i-th column and the j-th column of the adjacency matrix A. The term s;; defines a
notion of distance between the i-th column and the j-th column of the adjacency matrix A.
This quantifies the deviation from the condition {Ay; = Ay, Vk}. Detailed discussions of the

choice of s;; and its implications are given in Subsection 5.2. Let K be a kernel applied to
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the variable X. Define the weight w;; as follows:

Ky (%) Ko (555 1T, £ T3}

Zj#Kl(”)&( ]>1{Tj7éTi}
Denote T := {i : T; = 1,3j s.t. w;; > 0}. The sample objective function can be defined as
follows:
G ZZ (T, = T)(Y = ;) = T, = Tyla(Ds, Xi) Py (19)
ZET J#

The sample objective function L,, can be viewed as estimating the conditional expectation
E(T; = T)(Y: = Y;) — |T; — Tjlq(Ds, Xi)]2|A; = Ai, X; = Xi] using the Nadaraya-Watson
estimator. The exception is that we are only comparing nodes with different treatment

statuses to arrive at the treatment effect. The estimator of the causal effect is defined as

7r(D;, X;) == arg min L, (q;b) (20)
q€Qk
where Qy, is some sieve space. The goal of the rest of this section is to show that ||77(D;, X;)—
7r(D;i, X;)|l2 & 0 as n — oo.

5.2 Kernel

The requirement that Ay; = Ay; for all k places heavy restriction on the data. To deal with
this, this subsection considers a kernel on the /2-norm of the difference in columns of A. Let
t(i) be a vector with 1 at the i-th position and 0 elsewhere. Define +(j) in the same way. Let

s;; be a function that depends on the difference between the i-th and the j-th column of A:

= 5(A,4,7) = S([|AQ(@) = +(7))l2) (21)

The vector A(u(i) — 1(j)) is the difference between the i-th and the j-th column of the
adjacency matrix A. It has non-zero entries only in places where Ay; # Ay;, which happens
when node k is connected to only one of ¢,j but not both. It is immediate that Ay, = Ay;
for all k£ if and only if s;; = 0 if 5(a) # 0 for any a # 0. The identification argument in
Proposition 4.1 can be regarded as conditioning on s;; = 0, which guarantees that D;, D;
depends on v;,v; only through the symmetric function v; + v;. This then implies the key
identification result Efv; — v;|T;,T;, X; = X;, D; = D;, s;; = 0] = 0. However, when s;; # 0,

these results no longer hold and there is a bias from smoothing. Define the main version of
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s;; as follows:

1

min{ni, nj}

sij = S(IA(e(@) — e(G))ll2) = [AQ (@) = ¢(5))]l2 (22)
where n,; == Zj A;; is the degree of node i. When A;; takes value in {0, 1}, the term s;; can
be interpreted as the ratio of the number of different links between ¢ and j to the minimum
degree of ¢, 7. One immediate observation is that s;; > 2 if 7 and j share no link in common.
For concreteness, consider the example given in Figure 4. I only state the upper-triangular
part of the matrix s;; since it is symmetric. In addition, the diagonal elements s;; equal zero
by construction.
The following lemma quantifies the bias as a function of s;;.

Lemma 5.1 Let Assumption 5.2, /.1 hold. Further assume that =22k < C' for some

ming ng

constant C' and that sup ,, x, E[v}|A;, X;] < co. Then the following holds:
[EI(D(T, X, v, A))(vi = 0)| X, X5, T3, T, s35]) < Csiyg (23)

where C is a constant independent of T,X,v, A and sij is defined as in Equation (22).

If assumption %}f;‘: < C' for some constant C' fails, the above conclusion still holds with

s;; replaced by the following quantity:

1

MINg:n, >0 Nk

sij = S([[A((r) = (G))l2) = [AQ(2) = e(5))l2 (24)

The appearance of s;; may seem unnatural at first glance since none of D;, v;, v; explicitly
depends on s;;. However, D; implicitly depends on s;; through its dependence on the network
structure. The term E[l(D;)(v; —v;)| can be thought of as a measure of endogeneity. Recall
that the characterization in Equation (15) requires the cross-term to vanish. Lemma 5.1 can

be viewed as quantifying the magnitude of the cross-term when s;; # 0. The assumption of

maxy Nk

i < C states that the number of links for each node is of the same order of magnitude.
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This is imposed by the literature on spatial autoregression (for example, Assumption 3 in Lee
(2002)) to restrict correlation across spatial units. This can be rationalized by a variant of the
link formation in Bickel and Chen (2009): A;; = 1{p,h(¢i,¥;) > €;;} where 1;,1; are i.i.d.
individual characteristics, ¢;; are i.i.d. dyad-level shocks, and p,, is a deterministic sequence
that controls the sparsity of the network. For example, p,, = C leads to dense networks where
each node has degree of order O(n). If we impose h < inf,y h(a,b) < sup,, h(a,b) < h, the
condition %}’:;‘: < (' is satisfied by C = 2% for large n.

To illustrate the intuition of the lemma, consider a unit change in v; (or v;), holding v; +v;
constant. When s;; = 0, such a change does not affect D; because D; only depends on v; +-v;.
When s;; > 0, there are units linked to only one of 7, j but not both, and their outcomes are
affected by this change, which then propagates in the network through spillover. This leads
to the correlation between D; and v; — v;, even after conditioning on v; + v;. Lemma 5.1
shows that this effect depends on two quantities: (1) the number of nodes that are linked
to only one of 7,j, (2) the magnitude of immediate change in the outcome of these nodes
caused by a unit change in v; (or v;), holding v; +v; constant. The first quantity is precisely
|A(e(i) — ¢(4))]|2- For the second quantity, consider a node k that is linked to ¢ but not j.
The immediate effect of a unit change in v; on the outcome of Yy, = g(Dy, Ty, Xx) + vx can be
written as %g(Dk, Ty, Xk)%—%. The first quantity a;gkg(Dk, Ty, Xx) is bounded in absolute
value by x by Assumption 3.2, and the second quantity %—% equals % by definition. The
effect thus depends on the degree of k. If k£ has many neighbors, a change in the outcome of
one of its neighbors does not affect D; by much and Y}, will thus stay approximately the same.
However, the assumption 7% < C'implies iHA(L(z) ()2 < nQHA(L(z)—L(j))HQ = 5jj.
Therefore, the overall effect will be bounded by constant multiples of s;;.

The following corollary proves a similar result based on the assumption of a bounded

matrix norm.

Corollary 5.2 Let Assumption 5.2, 4.1 hold. In addition, assume that the operator norm

K
ming ng

of the adjacency matriz is bounded: ||A|| < Kk <1 for some constant i, where k is the

bound imposed in Assumption 3.2. Finally, assume that sup ,, x, E[v7|A;, X;] < oo Then the
following holds:

|E[€(Dz(T, X, V,A))(Ui — Uj)‘Xi,Xj, n,ﬂ, Sij” S Clsij + CQw/Sij (25)

where Cy, Cy are constants independent of T, X, v, A and s;; is defined as in Equation (22).

The difference from Lemma 5.1 is that we are now imposing assumptions on the norm
of the adjacency matrix. The assumption can be satisfied if the norm of the adjacency

matrix is bounded ||A|| = O(1) and the minimal degree ming ny diverges. For the bound
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on ||A]|, it suffices to bound the largest eigenvalue when A is symmetric (i.e. undirected
network). This is similar to Assumption A2 in de Paula et al. (2024). The authors assume
that the maximum eigenvalue norm of pgA is strictly less than one so that (I — poA)~" is
well-defined. Assumption 4.1 in Menzel (2025) also shares similar flavor. The core of this
type of assumption is to guarantee that the propagation of shocks is not explosive. The
bound on ||A]| can be equivalently viewed as restricting the degree of concentration in the

network, which is illustrated in the following two examples:

Example 5.1 (Star) Consider the case of a star network. With n = 4 nodes, the adjacency

matriz can be written as:

—_ == O
o O O =
o O O =
o O O =

where node 1 is the central node. Figure 5 includes the picture of the star network. Consider

a vector v with entries v; = \/Lﬁ for all i. ||Av|j3 = @ + 2% =n—1. This shows that

Al > v/n — 1.

Example 5.2 (Ring) Consider the case of a ring, where A;; = 1 if and only if j =i+ 1

orifi=1,7 =n. Forn =4, the adjacency matrix can be written as:

_ O = O
O = O
_ O = O
O = O =

Figure 6 includes the picture of the ring network. For any vector v with ||v|e = 1, it is

n—2 n

immediate that [|Av||3 = Y0 (v + vipa)? + (va +vn) + (V1 +v,-1)2 < 4Y" 07 = 4. Thus,
|Al| is bounded.

5.3 Consistency

With the kernels defined, it remains to establish the consistency of the proposed estimator

in Equation (20), which relies on the following sets of assumptions.

Assumption 5.1 supg,, |§(d,t,z)| < § for some constant § and sup,, x, E[jv;|*|4;, X;] <

©¢)
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Figure 5: Star Figure 6: Ring

The boundedness assumption is reasonable in the context of information provision. The

outcome variables tend to be measures related to knowledge and attitudes, which are usually

bounded.

Assumption 5.2 For any values of d,t, g(d,t,z) is a Lipschitz function with respect to x

with Lipschitz constant Lip(x).

The Lipschitz condition imposes smoothness restrictions on the function g¢(d,t¢,z), which

ensures that |g(d, t,z) — g(d, t,2")| = o(1) as we restrict ||z — 2'||2 = o(1) through the kernel.
Assumption 5.3
1. The kernels are bounded: || Ki|lo < 00, || K2lloo < 00

2. The choice of bandwidth is such that b — 0

Assumption 5.4 The conditional probability of receiving treatment is strictly bounded from
below and above: P(T; = 1|X; = x) € [m, 7| for all values of x.

For any two nodes i, j, let £(i, j) be the distance of the shortest path between i, j (i.e.,
the smallest integer k such that A% > 0 and A!; = 0 for all ¥’ < k). Define the following

)

quantities as in Kojevnikov et al. (2021):

No(izs):={j€1,---,n:L(ji)=s} (26)

5055 h) = 5 DTN (i)l 27)

The first quantity N2(i;s) is the collection of nodes that are s-step away from i. The
subscript n allows such set to vary with the sample size n. The second quantity 69(s; k) is
the average of the k-th power of the number of neighbors that are s-step away. When k£ = 1,

this becomes the average number of neighbors that are s-step away which is a measure of
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concentration. If the nodes are within short distances from each other (high N?(i;s) for
small s), the network is concentrated. When the network is overly concentrated, changes in
the outcome of a few nodes could have out-sized influence on the average outcome of the
whole network. The next assumption places a restriction on the level of concentration in the

network.

Assumption 5.5 37 67(s;1)x° =25 0 where £ is the bound on the derivative | % g(d, t, )]

in Assumption 3.2.

Assumption 3.2 imposes a bound k on the magnitude of the spillover effect, so the
interference decays at a geometric rate. This ensures that distant nodes have diminishing
influence. However, Assumption 3.2 does not place restrictions on the network structure and
distant nodes may not exist as in the star network. Assumption 5.5 fills this gap by requiring
that the network is not overly clustered. It is adapted from Kojevnikov et al. (2021) and is
a key condition for the law of large numbers.” In words, this assumption requires that the
average number of neighbors at any distance be small relative to the number of nodes. The

examples below illustrate this assumption in two different networks.

Example 5.1. (Continued) Consider the case of a star network. For the central node
i, N%(i;8) =n — 1 for s =1 and 0 for s > 1. For the peripheral nodes, N2 (i;s) = 1 for

s=1,n—=2fors =2 and 0 for s > 2. Tt follows that =¥ ., 09(s;1)s* = +[2=2k +

(n—lZ](n—Z)Klz] n—00 52 7&0

Example 5.2. (Continued) Consider the case of a ring, where A;; = 1 if and only if
j=i+1orifi=1,7=n. Whenn is an odd number, |N2(i;s)| = 2 for all s. When n is
an even number, |N2(i;s)| = 2 for all s < 2 and |[N2(i;s)] = 1 for s = 2. Assume without
loss that n is an odd number. We have 37 69(s;1)* = %ZE 2r° < 12 =0(1).

The assumption fails under the star network where any two peripheral nodes are 2-step
away from each other, and any peripheral node is 1-step away from the central node. In
contrast, the ring network is more spread out and satisfies the assumption.

There is another angle to interpret this assumption. Rewrite % Yoot 69(s;1)k* as follows:
LS s et = =57 (2 S0, 1w (28)
n s>1 " n % n s>1 o

The term + > o, [NJ(i,1)|s* can be regarded as the upper bound on the effect of a change

in the outcome of node 7 on the average outcome in the entire network. The example below

°In Kojevnikov et al. (2021), this assumption is stated with x° replaced by 0n.s, which bounds
the covariance between the outcome of nodes that are of distance s-away. In this paper, Lemma
B.1 shows that 60, ; behaves like x°.
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illustrates this idea in the linear-in-means model. In this regard, %st 69(s;1)K* is the
average influence of a change in the outcome of a single node on the average outcome of the

network. The law of large number requires that such effect shrinks to zero.

Example 5.3 Consider Y; = p1D; + BoT; + X; 85 + v; with By = B3 = 0. The system admits
a unique reduced form when By < k < 1: Y = (I — B1A)"'v = (I + 3.2, BiA%)v. Let
(i) be a vector with the i-th entry equal to 1 and all other entries equal to 0. A unit change
inv; on =Y Yy, can be written as +1'(1 — B A)Vu(i). Let I, Ay be the k-th row of I, A

respectively.

RUSEVIRID

_ %Z <Ik - Zﬁf%) (i)
— %Z > ( 5;[1;) 1(4) +% <I¢ + Zﬁf@) (1)
l s=1

I=1 keN2(i,l) \s=

1 1 1 1 ~
< |= - (S As| <1
I=1 keN2(i,l)
1 1 1 — 1
=|= — No(i,1 !
1 1 1 —
< - _Z|Nr?(lul)|"€ll

The following assumption imposes regularity assumptions on the sieve space
Assumption 5.6

1. The sieve space Qy, are compact under the L*-norm

2. Qr C Qpy1 € Q forall k.
3. There exists a sequence mTr € Q) such that |7 — 7r|2 = 0 as k — oo

The zero covariance condition in Equation (14) is the theoretical underpinning for char-
acterizing 77(D;, X;) as the unique minimizer of L? distance. However, this condition relies
on s;; = 0. The following two assumptions deals with the bias from smoothing by allowing
for s;; # 0. Assumption 5.7 approaches this problem from the ‘many network asymptotics’
where the network consists of blocks of bounded size and the number of blocks diverges with

the sample size. Assumption 5.8 adopts the ‘large network asymptotics’ where observations

24



do not belong to separate blocks. The consistency result requires that one of these two

assumptions hold.

Assumption 5.7 1. The event {A; = A;} happens with positive probability that is bounded
from below: 0 < p < P(A; = Aj)

2. A; has finite support
3. Ky =0 for any ||X; — Xj|l2 > C'b for some constant C’

4. The conditional density of v;|A;, X; is near identical for close x: For any e, there ezists

§ such that | fu, a, x, (v|a, ) — fvj‘Aj7Xj(v|a, )| <€ for any |z — 2'|| < 9.

5. The conditional density fy, 4, x,(v|a, x) is bounded from below: 0 < f < inf, 4. fu)4,x,(v]a, 7)

This assumption is imposed to deal with the endogeneity of D; using the ‘many network
asymptotics’. In the empirical example, there are 28 treated schools. It is reasonable to
assume that the probability of two students from the same school have the same set of friends
as nonzero. For the second assumption, A; takes a finite value within each school. For b small
enough, this implies that Kl(w) = K1(0)1{A; = A,} for any K that is supported on a
bounded interval. As a result, there is no smoothing with respect to A; — A; asymptotically.
These two assumptions can also be satisfied when people form groups as in Chemin (2018)
and people are connected to all others in the same group. The event A, = A; is thus
equivalent to i, j belonging to the same group. For n large enough, K; # 0 only if 7, j belong
to the same group. The third assumption also requires that /K3 have bounded support. It can
accommodate both discrete and continuous variables. The fourth and the fifth assumptions
are technical assumptions and can be replaced with the following alternative assumption:
For any e, there exists 0 such that |f,, 4, x,(v|a, ) = fu, 14, x;(v]a, 2')| < €fy, 4, x,(v|a, z) for
any ||z — 2'|] < 0. As shown in Proposition 4.1, Ev; — v;|4; = A;, X; = X;,D;] = 0. The
fourth and fifth assumptions ensure that this difference in conditional expectation is small
when the condition {X; = X} is relaxed. Overall, Assumption 5.7 requires that A, = A;
holds strictly asymptotically (no smoothing with respect to A; — A; asymptotically) but
allows for || X; — Xj||2 to deviate from zero. To approach the finite sample bias, one may

need to refer to Lemma 5.1 or Corollary 5.2.

Assumption 5.8

1. For any Lipschitz function l(.), the following holds: |E[l(D;)(v; —v;)|A:, Aj, Xi, Xj]| <

ti(sij) where t; is some continuous function with t,(0) =0

2. Ky has bounded support on [0, C]
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3. |T| = o0 asn — oo

Under the ‘single large network asymptotics’, it may not be feasible to assume that the
event Ay; = Ay; VEk happens with strictly positive probability. This assumption deals with
the bias from relaxing this constraint. For point 1 to hold, we could apply Lemma 5.1 or
Corollary 5.2. If all nodes have degrees of similar order of magnitude, Lemma 5.1 can be
applied. If assumptions on the norm of the adjacency matrix A can be imposed, Corollary
5.2 can be adopted.

The second and third points may seem non-standard at first glance. In textbook nonpara-
metric analysis, symmetric kernel is usually adopted to eliminate the bias from smoothing.
However, the support of A; (or fli) is a subset of the space of sequences which is of infinite
dimension. This is also referred to as functional data. Unlike finite-dimensional problems,
applying product kernels may lead to significant under-smoothing, or even no sample being
used. The literature studying the Nadaraya-Watson estimator under functional data thus
constructs kernels on the difference in norms (Ferraty et al. (2010), Hong and Linton (2016)).

The final assumption requires that the effective sample size tends to infinity. It can be
related to the assumption of nb? — oo when smoothing with respect to a d-dimensional
variable. This assumption imposes an upper bound on the speed at which b tends to zero
and ensures that the effective sample size tends to infinity. It also restricts the sequence of
networks. This is illustrated in the following three examples. For the first example, assume
that the network is undirected and all network links are i.i.d. Bernoulli random variables
with probability p. For large n, each individual has degree near np and the number of
different links for two arbitrary individuals is near 2np(1 — p). It is expect that s;; ~ @.
Unless p — 1, it is unlikely that |7| — oo. For the second example, assume that there are
G groups. Each individual joins G; groups where G; is a random variable and A;; = 1if 7, j
share at least one group in common. This resembles the informal groups in Chemin (2018).
Under this setup, we have positive probability of observing two individuals with the same
neighbors and |7 — oo holds trivially. The third example is a network formation process
based on homophily. Each individual draws &, € [0,1] and A;; = 1{|¢; —&;| < €}. For n large
enough, pairs with §; ~ &; are observed, which leads to s;; ~ 0, are observed. In general, the
required condition is more likely to hold when the network is generated by some underlying
low-dimensional variables.

The following theorem establishes the consistency of the proposed estimator.

Theorem 1 Assume that Assumption 5.2, /.1, 5.1 - 5.6 hold. Further assume that As-

sumption 5.7 or Assumption 5.8 holds. Then
“TT(Di;Xi) - 7A—T<Di>Xi)”2 %0
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where 7,,(D;, X;) is defined in Equation (20).

6 Simulation

This section presents simulation evidence on the performance of the proposed estimator.

The outcome is generated according to the following equation:
Y; =0.5+0.3T7; + 0.4D; + 0.2T;D; + v; (29)
which leads to the following causal effect:
r(D;, X;) = 0.3+ 0.2D; (30)

The error term v; follows a standard normal distribution and the treatment assignment 7; are
i.i.d. Bernoulli random variable with P(7; = 1) = 0.3. This section studies the performance
of the estimator under both the ‘many network” asymptotics and the ‘single large network’
asymptotics. For the ‘many network’ asymptotics, the network is generated as a block-
diagonal matrix where each block represents a school as in the empirical application. Each
block consists of n = 500 nodes. Within each block, the links are generated from one of the

following data-generating processes (DGP):

1. Network DGP 1: There are 12 groups and each individual joins a random number G;
of groups. The number of groups G; follows the following distribution: min{12, 1+ (;’Z}

where G; is a Poisson random variable with parameter A = 3.

2. Network DGP 2: Each individual obtains an i.i.d. draw from the uniform distribu-

tion on [0, 1], denoted as . The undirected network is generated from a variant of

the model in Auerbach (2022): A;; = I{p,\/|& — &l —v(& + &) > (1 —2v)n;;. The
parameter p, is set at 6010% and v is set at v = 0.3. The dyad-level shocks 7;; are

i.i.d. Uniform [0, 1] variables.

3. Network DGP 3: Each individual randomly joins one of the 50 groups. Let C; €
{1,2,---,50} denote the group that ¢ joins. The network is formed by A;; = 1{C; =

C;}, i.e. all individuals within a group are linked to each other.

The summary statistics on degree, Y, D, and link differences (s;;) for Network DGP 1, 2, 3
are contained in Table 1, 2, 3 respectively. Network DGP 1 can be considered as the baseline
DGP while DGP 2 and 3 add additional challenges. As shown in Table 2, the minimum link

difference is bounded away from zero, which challenges the identification argument. This
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adds bias to the estimator due to endogeneity. DGP 3 guarantees observations with the
same neighbors but the number of such observations is limited. In addition, under DGP 3,
two nodes have either s;; = 0 (same link structure) or s;; > 1. This implies that any choice
of bandwidth with 0 < b <1 yields the same result. This can be viewed as adding challenges
through a higher variance. Since the identification argument in Proposition 4.1 hinges on
s;; = 0, one would expect that the bias of the estimator in Network DGP 3 is less than that
under Network DGP 2. However, recall that the endogeneity in estimation stems from the
covariance of a function of D; and v; — v;, which is illustrated in Equation (16). When D;
exhibits limited variation, this covariance term may also be small due to the Cauchy-Schwarz
inequality. This is analogous to the consistency result in Lee (2002). As the network under
DGP 2 is denser compared to DGP 3, this bias need not be much larger than in DGP 3.
For the ‘single large network’ asymptotics, the network is generated according to the

following process:

1. Network DGP 4: This is a variant of the Network DGP 1. There are 10 groups and
each individual joins a random number G; of groups. The number of group G; follows
the following distribution: min{10, 14 G;} where G; follows a Poisson distribution with

parameter \ = 1.

The summary statistics are contained in Table 4. As the number of nodes expands, there
will be more nodes with similar share of neighbors. This can be seen from Table 4 where
the minimum Link difference decreases with the sample size.

For each simulated dataset, the estimation problem is:

1
max Ln(g;b) = =Y > [(Ti = T)(Yi = ;) = |T; — Tjlq(D:)]’w; (31)
9€Q 7] i€T j#i,Ciy=1

The treatment effect 77 is approximated by a linear combination of basis functions ¢(D;) =
Zle v Br(D;) where {7, } | is the set of coefficients to be estimated using weighted least

squares. The estimated treatment effect 77 is equal to

'%T(Di) = Z’AYrBr(Di) (32)

fy
q = (|Ti = Tj|q(Ds))s,
y = (T =Tj)(Yi = Y;))ij
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where (2 is the diagonal matrix with diagonal entries w;;. The basis functions are Bernstein
polynomials. The probability density function of the truncated normal distribution on [0, 1]

is adopted as the kernel K;:

where ¢, ® are the probability density function and the cumulative density function of the
standard normal distribution, respectively.
The L? loss is used to evaluate the performance of the estimator. It is calculated as

follows:

0([dy, dar)) = Z ) — 77(dm))? (33)

where {d,,}*_, is a set of grid on the interval [d,dy]. The baseline interval [dy,dy,] is
chosen to be the minimum and maximum of D. For example, [dy,dy] = [0.1,0.85] with
grid size 0.001 for Network DGP 2. For Network DGP 3, the original interval is [—0.2, 2]
with grid size 0.002. Since the basis functions may behave poorly near the boundary due
to limited number of observations, the L? loss is also computed on truncated intervals. For
example, the L? loss is computed on the truncated interval [0.15,0.8] for Network DGP 2.

For Network DGP 1-3, I vary (1) the number of schools, (2)the bandwidth, and (3) the
degree of the basis function. One exception is that the bandwidth is fixed for Network DGP
2. This is because any bandwidth 0 < b < 1 yields the same result as mentioned above.
For Network DGP 4, the number of nodes is set to different values instead of the number of
schools. The number of simulation repetitions is set to 2000, and the L?-loss results under
Network DGP 1-4 are contained in Appendix A Table 8-11 respectively. For illustrative
purposes, I plot the results under Network DGP 1 in Figure 6. The figures for Network
DGP 2-4 contain qualitatively similar results and are collected in Appendix A as Figures 10
- 12.

The mean squared error under Network DGP 1 is plotted in Figure 6, where the horizontal
axis is the number of schools. Start with the graph on the left where the mean squared
error is calculated on the full support of D; ([0.2,1.05]). The plotted lines contain results
under different configurations of bandwidths and degrees. The difference in bandwidth is
characterized by points of different shapes and the difference in degrees is represented by
different colors. Immediate from the graph is that the mean squared error decreases with
the number of schools, which coincides with the consistency result in Theorem 1. Next, an
overly-low bandwidth may lead to a higher mean squared error as it reduces the effective

sample size. This can be seen by comparing lines of the same color, where the circles (b = 0.2)
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have higher error compared to triangles (b = 0.5) and squares (b = 1). Similarly, including
too many basis functions may lead to a higher mean squared error as it fits more noise. This
can be seen by comparing lines of different colors, where the ones colored in blue have higher
mean square error. The graph on the right plots the mean squared error calculated on a
smaller interval [0.3,0.95]. This is because the number of observations near the boundary of
the support is sparse and can lead to imprecise estimates. Indeed, the error is halved as can
be seen from the scale of the y-axis. The difference in bandwidth and degrees now produce
less difference as well. Finally, the L? loss under Network DGP 2 and 3 are comparable
except when the degree equals 8 as seen in Figure 10 and 11. This confirms the intuition

that the endogeneity problem may be less of a concern when D; exhibits limited variation.
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Figure 7: Sample Mean Squared Error under Network DGP 1

Notes: This figure plots the simulation results under Network DGP 1. The horizontal axis is the
number of schools and the vertical axis is the sample mean squared error as defined in Equation
(33). Each school contains 500 observations. The graph on the left calculates the the mean
squared error on the full support while the graph on the right truncates the support on both ends to
avoid boundary issues. The set of bandwidth is {0.2,0.5,1} while the set of degree is {3,5,8}. The
results under different bandwidth are plotted as points of different shapes. Difference in degree is
represented by different colors.
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Degree Y D Link Difference
#School . : : :
mean | min | max | mean | min | max | mean | min | max | mean | min | max
5 376 142 | 498 | 0.91 |-2.64|4.51 [0.70 |0.23|1.00]0.58 |0 2.50
10 376 140 | 499 | 091 |-2.82]4.69 | 0.70 |0.22|1.03]0.58 |0 2.57
15 376 138 1499 | 091 |-2941|479 [0.70 |0.22 104|058 |0 2.61
20 376 137 1499 | 091 |-3.02|4.86 |[0.70 |0.21|1.05]0.58 |0 2.63
Table 1: Summary Statistic under Network DGP 1
Degree Y D Link Difference
#School : : . :
mean | min | max | mean | min | max | mean | min | max | mean | min | max
5 181 85 | 432 | 0.74 |-2.81 (429033 |0.13]0.80 |1.52 |0.18 | 4.96
10 181 83 | 435 | 0.74 |-298 448033 |0.12]0.83 |1.52 |0.17 | 5.13
15 181 82 436 |0.74 |-3.094.60 033 |0.12]0.84 |1.52 |0.17 | 5.22
20 181 81 | 437 |0.74 |-3.16 | 4.67 | 0.33 | 0.11 | 0.85 | 1.52 | 0.16 | 5.28
Table 2: Summary Statistic under Network DGP 2
#School Deg.ree Y D Link leference
mean | min | max | mean | min | max | mean | min | max | mean | min | max
5 11 3 20 0.84 |-2.86|4.65|054 [-023]184 241 |0 9.18
10 11 2 21 0.84 |-3.05 484|054 [-029|197 241 |0 11.11
15 11 2 21 0.84 |-3.15497 | 054 |-0.32]2.06 241 |0 12.44
20 11 2 22 0.84 |-3.24 505|054 [-034]211 241 |0 13.09
Table 3: Summary Statistic under Network DGP 3
n Degree Y D Link Difference
mean | min | max | mean | min | max | mean | min | max | mean | min | max
500 | 176 85 | 405 |0.74 |-233|3.83[0.34 |0.14|0.76 | 1.69 | 0.007 | 4.33
1000 | 353 179 | 836 | 0.74 |-2.55|4.04 {032 |0.15|0.75 | 1.68 | 0.003 | 4.19
1500 | 530 275 | 1271 | 0.74 | -2.67 | 4.15 [ 0.32 | 0.15| 0.75 | 1.68 | 0.002 | 4.14
2500 | 884 | 468 | 2154 | 0.73 | -2.81|4.29 | 0.31 |0.16 | 0.74 | 1.67 | 0.001 | 4.09
Table 4: Summary Statistic under Network DGP 4
7 Empirical Application

The empirical application is based on the network experiment conducted by Paluck et al.

(2016). The authors study the impact of an anti-conflict intervention on social norms among

adolescents in schools. There are 56 public middle schools that participated in the study.

Half of these schools are randomly selected to receive an anti-conflict intervention. Within

each treated school, a subset of students is designated as the seed group based on their

covariates. Half of the students in the seed group are selected to participate in the interven-

tion by block randomization. The treated students participate in bi-monthly meetings with
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trained research assistants. During training sessions, research assistants help students iden-
tify common conflict behaviors in their schools and encourage them to oppose such conflicts
in public. The authors perform two waves of surveys. The first wave of survey is conducted
before the intervention and the second wave occurs after the treatment. In each survey,
students are asked to answer questions related to social norms and their own attitudes. I
work with the 28 treated schools with 10,056 students in total.

Within each school, the network is measured by asking students to list up to ten students
at their school whom they chose to spend time with in the past few weeks. The resulted
network is directed. In the empirical application, I work with the undirected network which
assumes that 4, j is linked if A;; =1 or A;; = 1.

Past studies adopt the indicator variable for wearing an orange wristband as the outcome
variable (Paluck et al. (2016), Aronow and Samii (2017), Leung (2020)). The wristband
is disseminated as a reward to those students engaging in conflict-mitigating behaviors.
Since the current paper focus on continuous outcome variables, an index for anti-conflict
attitude is adopted as the outcome variable. The index is constructed based on all the 33
variables in the section ‘Respondent Attitudes’ contained in the Wave II survey. These are
binary questions that measure individual attitude towards conflicts in the school. As an
example, the variable ‘CSCAW?2’ contains the binary response towards the question ‘If we
want, students can change the amount of conflict at our school’. However, higher value of
the binary variable does not necessarily correspond to a more positive attitude. For instance,
the variable ‘CILW?2’ contains the binary response to the question ‘I have had a lot of conflict
with other students at this school’ and a higher value indicates a more negative attitude.® To
this end, I redefine the binary variables such that a higher value represents a more positive
attitude. In the case of the variable ‘CILWZ2’, this is done by working with the variable ‘1
- CILW2’ instead of ‘CILW2’. After this transformation, the index is created as an average
across the binary responses. The summary statistics are listed in Table 5. Samples with
responses outside {0, 1} are excluded, leaving 5,802 individuals in the sample.

Some variables in the ‘Respondent Attitudes’ section do not directly reflect the attitude
of the respondent. For example, the variable ‘CBIW?2’ collects the response to the question
‘Boys at this school are involved in a lot of conflict’. As a robustness check, I include only
the set of variables that directly reflects the respondent attitude. The outcome variable is

then constructed based on the following eight survey questions in the second wave:
1. If we want, students can change the amount of conflict at our school

2. I'd like to help change the amount of conflict at our school with a group of other

students

6There are 17 such variables.
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3. I think teachers and the bullying (harassment, intimidation & bullying: HIB) rules of

this school help solve student conflicts
4. T can help change the way students at this school act around each other
5. I feel like I belong at this school
6. I have had a lot of conflict with other students at this school
7. Sometimes you have to be mean to others as a way to survive at this school
8. I've stayed home from school because of problems with other students

All questions are binary and the answers are either 0 (no) or 1 (yes). Answering 1 (yes)
reflects a positive attitude for questions 1-5 and a negative attitude for 6-8. As argued
above, the roles of 1 and 0 are reversed for question 6-8 and construct the index Y as the
average answer for question 1-8. The summary statistics for this alternative construction of
the index are listed in Table 12 in Appendix A. Samples with responses outside {0, 1} are

excluded, leaving 10,056 individuals in the sample.

Variable | Mean | Standard Deviation | Min | Max | Sample Size
Y; 0.679 0.137 0.182 1 4,756
D; 0.681 0.071 0.242 | 0.939 4,694
T, 0.064 0.245 0 1 4,756
n; (Degree) | 6.135 2.998 1 21 4,694

Notes: This table contains the summary statistics for the index constructed based on the
questions in the section ‘Respondent Attitudes’ contained in the Wave II survey. The variable Y;
is constructed based on all questions in the section. Each sample is an individual. Samples are

excluded if (1) answer does not fall in {0, 1} for the binary questions, (2) contain missing values

for any variables listed in the table.

Table 5: Summary Statistics

Mean

Standard Deviation

Min

Max

First Quartile

Third Quartile

Sample Size

3.062

1.532

0

21

2.200

3.333

51,757

Notes: This table contains the summary statistics for the maximum share of different links s;; as
defined in Equation 22. Each observations is a pair of individuals in the same school.

Table 6: Summary Statistics of s;;

Start with the baseline estimation without covariates. Let Cj; be an indicator variable

that equals one if individuals ¢, j are in the same school. Only within-school comparisons are
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made since the survey collects the links within schools. As stated in the simulation section,

the estimation problem is:

max L, (g; b) = Z >l Y;) = |T; = Tjla(Dy)wy (34)

qeQ
7,ET Jj#i1,Ci5=1

The treatment effect 7r is approximated by a linear combination of basis functions ¢(D;) =
S 4. B(D;) where {7,}2 | is the set of coefficients. The estimated treatment effect 77 is

equal to

The coefficients 4 are estimated through weighted least squares and the basis functions are
Bernstein polynomials. The probability density function of the truncated normal distribution
on [0,1] is adopted as the kernel K:

x 1
Kl <b> b (1) —2(0)
where ¢, ® are the probability density function and the cumulative density function of the
standard normal distribution, respectively.

I consider three values for the bandwidth b € {0.2,0.5, 1} and three values for the number
of basis functions R € {3,5,8}. To avoid problems at the boundary, I truncate the range
of the plot on both sides, and the plot for b = 1, R = 3 is shown in Figure 8. The blue
lines are point-wise 95% confidence intervals obtained from bootstrapping the schools. The
full results are shown in Figure 13. The results for the alternative definition of the outcome
variable are included in Figure 14.

Due to the limited sample size, I also consider a partial linear model to incorporate

control variables:

The control variables X include gender, indicators for (1) white, (2) mother went to college,
(3) live with both parents, (4) have older siblings, (5) hang out with boys and girls at school.
The summary statistics of the control variables are included in Table 7. This is estimated by

approximating ¢ with smoothing splines (Section 5.4 in Hastie et al. (2009)). The estimation
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problem is as follows:

2
min El ZZ (Y Y; - Z% S (X — X;)8 ) Dij + M (Zﬁ?) + Ao (Zﬁﬁ)
7 el J T k

ij ZgKl(S%)]l{Tz#T]}

7'::{@'6{1,-- ZKl 1{T¢T}>o}

(37)
The basis function B, are natural cubic splines with knots at each unique value of the data
point D;, and are defined as in Equation (5.4), (5.5) in Hastie et al. (2009). The number
of basis functions R is equal to the number of distinct values of D; observed in the sample.
The penalty parameters \j, Ao are chosen by five-fold (leave-one-out) cross validation, with

the following criteria function:
2
ZZ (Y Y~ Z% (N1.4)Br(D;) — ( i—Xj>B<A;z',j>> @ (38)
ZET J

where 5,(\;,7) and B(\;i, ) are estimated using observations from clusters different from

1,7. The result is shown in Figure 9.

Variable Mean | Standard Deviation | Sample Size
Male 0.554 0.497 4,756
White 0.641 0.480 4,756
Mother Went to College 0.720 0.449 4,756
Live with Both Parents 0.736 0.441 4,756
Have Older Siblings 0.627 0.484 4,756
Hang out with Boys and Girls | 0.712 0.453 4,756

Notes: This table contains the summary statistics for the binary control variables. The variable
Y; is constructed based on all questions in the section. Each sample is an individual. Samples are
excluded if (1) answer does not fall in {0, 1} for the binary questions, (2) contain missing values
for any variables listed in the Table 5

Table 7: Summary Statistics for Control Variables

Overall, the results suggest considerable non-linearity in the treatment effect. The treat-
ment effect is higher for students whose friends have more positive attitudes, suggesting the
presence of complementarity. Students benefit from treatment directly, but this can be en-

hanced by discussing the information with their peers. When the peers have more positive
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attitude, the benefit from discussing with peers also increases. If the policy maker intends
to carry this treatment to another network (school), he/she may target the individuals with
more optimistic friends. This again highlights the advantage of the method proposed in this

paper which explicitly shows the relationship between treatment and spillover.

Figure 8: Estimated Treatment Effect under b =1
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Notes: This plot shows the estimated 77(D;) at different values of D; in [0.55, 0.8] under the
bandwidth choice b = 1. The outcome variable is the index constructed using all the questions in
the section ‘Respondent Attitudes’ contained in the Wave II survey. The x-axis is D; and the
y-axis is 7. The blue lines are point-wise 95% confidence intervals obtained from bootstrapping
the schools. The basis function is Berstein polynomials of degree 3.

8 Conclusion

This paper studies the treatment effect under the presence of endogenous peer influence in
networks. A nonlinear peer effect model is constructed, based on which the causal effects are
defined. Identification of the treatment effect is obtained by comparing nodes with different

treatment status but the same link structure. The identification argument can be extended
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to observational studies under the assumption of selection on observables. Although the
identification argument places considerable restrictions on the data, I develop a kernel on
the maximum share of different links which enables smoothing in finite samples. Consis-
tency of the estimator is established, and the estimator is applied to the empirical example,
illustrating the presence of nonlinearity of the anti-conflict intervention. The method in this
paper also applies to other contexts. For example, the importance of endogenous peer effects
is highlighted in other contexts including adolescent smoking (Nakajima (2007)), academic
performance (Calvé-Armengol et al. (2009)). The treatment effect of policy interventions
likely depends on the average neighbor outcomes. For example, consider the information
sessions on the adverse impact of smoking. The effect of these sessions may be attenuated
when peers are intense smokers: they may simply discourage the treated individual.

The proposed method has three advantages. First, it does not rely on parametric as-
sumptions and exogeneity of the network. The latter is a typical assumption for construct-
ing instrumental variables. Second, the method does not restrict the distance of spillover.
Third, the method works under some types of cross-cluster interference. For example, peo-
ple in a village choose to join a subset of groups. Chemin (2018) faces this challenge and
states the result as a lower bound since the control groups are affected by such cross-cluster
interference.

The paper also faces two major limitations. First, the functional form assumption of
additively separable errors is hard to accommodate discrete outcomes. Second, the iden-
tification argument of the same set of neighbors places strong restriction on the data. It
may fail in scenarios where networks are formed with limited level of dependence. This is
because the number of ways to form links (2") is larger than the sample size (n). The kernel
proposed in this paper relaxes this restriction in finite samples but one still needs to take a

stance on how the network is formed.
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Figure 9: Estimated Treatment Effect under Partial Linear Model

0.15

0.10

Estimated Treatment Effect

0.00 e

0.55 0.60 0.65 0.70
Average Neighbor Attitude

Notes: This plot shows 7p(D;) at different values of D; in [0.55, 0.8] under the bandwidth choice
b = 1. The outcome variable is the index constructed using all the questions in the section
‘Respondent Attitudes’ contained in the Wave II survey. The specification for the outcome
variable is a partial linear model as in Equation (36) and the control variables include gender,
indicators for (1) white, (2) mother went to college, (3) live with both parents, (4) have older
siblings, (5) hang out with boys and girls at school. The basis functions are natural cubic splines
with knots being all unique values of D; in the sample. The coefficients are estimated by
generalized ridge regression where the penalty term is chosen from five-fold (leave-one-out)
cross-validation. The z-axis is D; and the y-axis is 77. The purple area are point-wise 95%
confidence intervals obtained from bootstrapping the schools.
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Figure 10: Sample Mean Squared Error under Network DGP 2
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Notes: This figure plots the simulation results under Network DGP 2. The horizontal axis is the

number of schools and the vertical axis is the sample mean squared error as defined in Equation

(33). Each school contains 500 observations. The graph on the left calculates the the mean

squared error on the full support while the graph on the right truncates the support on both ends to
avoid boundary issues. The set of bandwidth is {0.2,0.5,1} while the set of degree is {3,5}. The

case with degree equal to eight gives extreme values that distorts the plot and is excluded.

For the

result under this case, please refer to Table 9. The results under different bandwidth are plotted as

points of different shapes. Difference in degree is represented by different colors.
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Figure 11: Sample Mean Squared Error under Network DGP 3

Notes: This figure plots the simulation results under Network DGP 8. The horizontal axis is the
number of schools and the vertical axis is the sample mean squared error as defined in Equation
(33). Each school contains 500 observations. The graph on the left calculates the the mean
squared error on the full support while the graph on the right truncates the support on both ends to
avoid boundary issues. The set of bandwidth is {0.2,0.5,1} while the set of degree is {3,5,8}. The
results under different bandwidth are plotted as points of different shapes. Difference in degree is
represented by different colors.
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Figure 12: Sample Mean Squared Error under Network DGP 4

Notes: This figure plots the simulation results under Network DGP 4. The horizontal axis is the
number of individuals and the vertical azis is the sample mean squared error as defined in
Equation (33). The graph on the left calculates the the mean squared error on the full support
while the graph on the right truncates the support on both ends to avoid boundary issues. The set
of bandwidth is {0.2,0.5,1} while the set of degree is {3,5,8}. The results under different
bandwidth are plotted as points of different shapes. Difference in degree is represented by different
colors.

46



L? Loss on Interval
Degree | Bandwidth | #School | [0.2,1.05] | [0.25,1] | [0.3,0.95] | [0.35,0.9] | [0.4,0.85]
5 0.022 0.015 0.012 0.011 0.010
0.2 10 0.014 0.009 0.007 0.006 0.005
' 15 0.010 0.007 0.005 0.004 0.004
20 0.009 0.005 0.004 0.003 0.003
5 0.017 0.012 0.010 0.009 0.009
5 0.5 10 0.011 0.007 0.006 0.005 0.005
15 0.009 0.006 0.004 0.004 0.003
20 0.007 0.005 0.004 0.003 0.003
5 0.016 0.012 0.010 0.009 0.009
1 10 0.011 0.007 0.006 0.005 0.005
15 0.008 0.006 0.004 0.004 0.004
20 0.007 0.005 0.004 0.003 0.003
5 0.030 0.018 0.015 0.013 0.012
0.9 10 0.021 0.010 0.008 0.007 0.006
' 15 0.017 0.008 0.006 0.005 0.004
20 0.014 0.006 0.004 0.004 0.003
5 0.024 0.014 0.012 0.011 0.011
5 0.5 10 0.016 0.009 0.007 0.006 0.006
15 0.013 0.007 0.005 0.004 0.004
20 0.011 0.005 0.004 0.003 0.003
5 0.023 0.014 0.012 0.011 0.010
1 10 0.016 0.008 0.007 0.006 0.006
15 0.012 0.006 0.005 0.004 0.004
20 0.011 0.006 0.004 0.004 0.003
5 0.039 0.021 0.017 0.015 0.015
0.2 10 0.028 0.013 0.009 0.008 0.007
15 0.023 0.009 0.006 0.006 0.005
20 0.021 0.008 0.005 0.004 0.004
5 0.032 0.017 0.014 0.013 0.013
g 0.5 10 0.023 0.010 0.008 0.007 0.006
15 0.019 0.008 0.006 0.005 0.005
20 0.018 0.007 0.005 0.004 0.004
5 0.031 0.017 0.014 0.013 0.012
1 10 0.022 0.010 0.008 0.007 0.006
15 0.019 0.008 0.006 0.005 0.005
20 0.017 0.007 0.005 0.004 0.004

Table 8: L2 Loss under Network DGP1

Notes: This table shows the L? loss under Network DGP 1. The results include different
configurations of the number of basis function (degree), bandwidth, number of schools. The L?
loss is calculated according to Equation (33) on different choices of [d1, d] reported in Column
4-8. The number of individuals (nodes) in each school (block) is set at 500. The number of
simulation repetition is set at 2000.
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L? Loss on Interval
Degree | Bandwidth | #School | [0.1,0.85] | [0.15,0.8] | [0.2,0.75] | [0.25,0.7] | [0.3,0.65]
5 0.021 0.014 0.011 0.010 0.009
0.9 10 0.013 0.008 0.006 0.005 0.005
' 15 0.010 0.006 0.004 0.004 0.003
20 0.008 0.004 0.003 0.003 0.002
5 0.016 0.011 0.009 0.008 0.008
5 0.5 10 0.009 0.006 0.005 0.004 0.004
15 0.007 0.004 0.003 0.003 0.003
20 0.006 0.003 0.002 0.002 0.002
5 0.014 0.010 0.009 0.008 0.008
1 10 0.009 0.006 0.004 0.004 0.004
15 0.007 0.004 0.003 0.003 0.003
20 0.006 0.003 0.002 0.002 0.002
5 0.030 0.016 0.014 0.012 0.012
0.9 10 0.020 0.009 0.007 0.006 0.006
' 15 0.016 0.007 0.005 0.004 0.004
20 0.014 0.005 0.004 0.003 0.003
5 0.022 0.013 0.011 0.010 0.010
5 0.5 10 0.015 0.007 0.006 0.005 0.005
15 0.012 0.005 0.004 0.003 0.003
20 0.010 0.004 0.003 0.003 0.002
5 0.021 0.012 0.010 0.010 0.010
1 10 0.014 0.007 0.005 0.005 0.005
15 0.011 0.005 0.004 0.003 0.003
20 0.010 0.004 0.003 0.002 0.002
5 0.038 0.020 0.016 0.015 0.014
0.2 10 0.028 0.011 0.008 0.007 0.007
' 15 0.023 0.008 0.006 0.005 0.005
20 0.021 0.007 0.004 0.004 0.004
5 0.031 0.015 0.013 0.012 0.012
g 0.5 10 0.022 0.009 0.007 0.006 0.006
15 0.018 0.006 0.004 0.004 0.004
20 0.016 0.005 0.003 0.003 0.003
5 0.029 0.015 0.012 0.011 0.011
1 10 0.021 0.008 0.006 0.006 0.006
15 0.017 0.006 0.004 0.004 0.004
20 0.016 0.005 0.003 0.003 0.003

Table 9: L? Loss under Network DGP2

Notes: This table shows the L? loss under Network DGP 2. The results include different
configurations of the number of basis function (degree), bandwidth, number of schools. The L?

loss is calculated according to Equation (33) on different choices of [dy, das] reported in Column
4-8. The number of individuals (nodes) in each school (block) is set at 500. The number of

simulation repetition is set at 2000.
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L? Loss on Interval

Degree | Bandwidth | #School | [-0.2,2] | [-0.15,1.95] | [-0.05,1.85] | [0.1,1.7] | [0.3,1.5]
5) 0.028 0.023 0.017 0.012 0.010
3 (0,1] 10 0.021 0.017 0.012 0.008 0.006
’ 15 0.017 0.014 0.009 0.006 0.004
20 0.015 0.012 0.008 0.005 0.004
) 0.055 0.046 0.038 0.028 0.016
5 (0,1] 10 0.036 0.028 0.021 0.014 0.009
’ 15 0.030 0.023 0.016 0.011 0.007
20 0.027 0.021 0.014 0.010 0.005
5) 11.145 11.378 9.425 4.052 0.633
3 (0,1] 10 0.875 0.879 0.688 0.269 0.048
’ 15 0.674 0.631 0.476 0.183 0.031
20 0.378 0.370 0.272 0.088 0.013

Notes: This table shows the L? loss under Network DGP 3. The results include different
configurations of the number of basis function (degree), number of schools. All bandwidth

Table 10: L? Loss under Network DGP3

satisfying 0 < b < 1 yields the same L? loss as argued in the text. The L? loss is calculated

according to Equation (33) on different choices of [dy, dy] reported in Column 4-8. The number

of individuals (nodes) in each school (block) is set at 500. The number of simulation repetition is

set at 2000.
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L? Loss on Interval
Degree | Bandwidth | n [0.1,0.85] | [0.15,0.8] | [0.2,0.75] | [0.25,0.7] | [0.3,0.65]
500 | 0.073 0.049 0.039 0.035 0.031
0.2 1000 | 0.047 0.030 0.023 0.019 0.017
1500 | 0.039 0.023 0.016 0.013 0.011
2500 | 0.029 0.017 0.011 0.008 0.007
500 | 0.062 0.042 0.034 0.030 0.027
3 0.5 1000 | 0.042 0.027 0.021 0.017 0.015
1500 | 0.035 0.021 0.015 0.012 0.011
2500 | 0.026 0.015 0.010 0.008 0.007
500 | 0.062 0.042 0.034 0.030 0.026
1 1000 | 0.041 0.027 0.020 0.017 0.015
1500 | 0.035 0.021 0.015 0.012 0.011
2500 | 0.026 0.015 0.010 0.008 0.006
500 | 0.106 0.077 0.064 0.050 0.042
0.9 1000 | 0.070 0.048 0.037 0.028 0.022
1500 | 0.056 0.036 0.028 0.020 0.015
2500 | 0.044 0.025 0.018 0.013 0.010
500 | 0.091 0.066 0.054 0.043 0.036
5 0.5 1000 | 0.064 0.043 0.034 0.025 0.020
1500 | 0.053 0.033 0.025 0.018 0.014
2500 | 0.042 0.024 0.017 0.012 0.009
500 | 0.090 0.066 0.054 0.042 0.035
1 1000 | 0.063 0.043 0.034 0.025 0.020
1500 | 0.053 0.033 0.025 0.018 0.014
2500 | 0.042 0.024 0.017 0.012 0.009
500 | 1.225 0.889 0.325 0.116 0.070
0.2 1000 | 1.178 0.926 0.386 0.117 0.044
' 1500 | 0.287 0.201 0.087 0.042 0.027
2500 | 0.135 0.089 0.047 0.027 0.019
500 | 0.986 0.712 0.260 0.095 0.059
3 0.5 1000 | 1.103 0.868 0.362 0.109 0.041
1500 | 0.285 0.198 0.083 0.039 0.026
2500 | 0.130 0.085 0.044 0.026 0.018
500 | 0.941 0.679 0.249 0.093 0.059
) 1000 | 1.016 0.796 0.333 0.103 0.040
1500 | 0.290 0.203 0.085 0.039 0.026
2500 | 0.130 0.085 0.044 0.026 0.018

Table 11: L? Loss under Network DGP4

Notes: This table shows the L? loss under Network DGP 4. The results include different
configurations of the number of basis function (degree), bandwidth, number of nodes (n). The L2
loss is calculated according to Equation (33) on different choices of [dy, d)s] reported in Column
4-8. The number of simulation repetition is set at 2000.
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Variable | Mean | Standard Deviation | Min | Max | Sample Size
Y, 0.633 0.218 0 1 8,163
D; 0.633 0.096 0.125 | 0.929 8,152
T; 0.068 0.252 0 1 8,163
n; (Degree) | 9.894 3.876 1 32 8,152

Notes: This table contains the summary statistics for the index constructed based on the
questions in the section ‘Respondent Attitudes’ contained in the Wave II survey. The variable Y;
is constructed based on the eight questions that more directly reflects individual attitude. Each
sample is an individual. Samples are excluded if (1) answer does not fall in {0, 1} for the binary
questions, (2) contain missing values for any variables listed in the table.

Table 12: Summary Statistics under Alternative Construction of Y;
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Figure 13: Estimated Treatment Effect under Different Bandwidth and Degree
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Notes: This plot shows 7r(D;) at different values of D; in [0.55, 0.77]. The outcome variable is
the index constructed using all the questions in the section ‘Respondent Attitudes’ contained in
the Wave II survey. The range plotted corresponds to the range in the data truncated by 0.1 both
to the left and to the right. It attempts to deal with the problem at the boundary. The x-axis is
D; and the y-axis is 77.
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Figure 14: Estimated Treatment Effect Based on Partial Index
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Notes: This plot shows 7r(D;) at different values of D; in [0.36, 0.83]. The outcome variable is
the partial index constructed using only the eight questions directly reflecting individual attitude
towards conflict. This range corresponds to the range in the data truncated by 0.1 both to the
left and to the right. It attempts to deal with the problem at the boundary. The z-axis is D; and

the y-axis is 77. The purple area are point-wise 95% confidence intervals obtained from
bootstrapping the schools.
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B Proofs

B.1 -dependence

The proof of consistency uses the definition of ¢)-dependence and the law of large numbers
for ¢-dependent variables from Kojevnikov et al. (2021). For any two nodes ¢, j, let £(i, j) be
the distance of the shortest path between 7, j (i.e., the smallest integer k such that Afj >0
and Ai; = 0 for all ¥’ < k). For any two sets A, B C N,, where N,, is the collection of nodes,
let {(A, B) == {min; ; ((i,7),7 € A,j € B}. Denote Y = (Y; : i € B) for any set B C N,,.
Let £, be the set of bounded Lipschitz function from R* — R.

Definition 1 A triangular array {Y;}!, is called v-dependent, if for each n there exists a
sequence {0, s }s>0, Ono = 1 and a collection of non-random functional (Yap)apen : Lo X Ly —
[0,00), such that for all A, B € P,(a,b,s) with s >0 and all f € L, and g € Ly:

’COU(f(YA)a g(YB>)| < 2ﬂa,b(f? g>9n,s (39>

where
Pnla,b,s) ={(A,B): A,BCN,,|A|l =a,|B| =b{l(A,B) > s} (40)

Assumption B.1 There ezists a finite integer S > 1 such that (v;, X;, T;) L (vj, X;,T;) for
any i,j with £(i,7) > S

Lemma B.1 Assume that Assumption 3.2, 5.1, B.1 hold. Then {Y;}!, is ¥ -dependent with

1 s<25+1
Ons s>2S+1

Vas(fr9) = 4laLip(f)]|glloe + 0Lip(9)] fllse + I fllsollgllso]

= o { BV = Y3 Lol e £, — Y3 Ls )l

en,s =

and

s

én,s <

E[Yil]

1—+x

Proof. Define N;(L) = {j : flfj > 0} as the set of neighbors that can be reached within L
steps from node i. Let D;(L) :== (D, : j € N;(L)) be the vector of average knowledge of the
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nodes that can be reached in L steps from i. Denote the following set of variables:

Uj,L = g(Dj,T'j7Xj,Uj) VJ < NZ<L)

o= (Z Ajkak,m,zg,xj,vj) Vje N(L—-1),1<I<L-1 ()
k

0;,0 = Yi=g (Z Aijaj,laTiaXi;Uz‘)

J
The above process represents expanding the knowledge equation L times starting from node 7.
By Assumption 3.2, Y; can be approximated by the above with o ;, replaced by an arbitrary
constant when L is large enough. This is because the influence of others nodes diminishes
geometrically in distance. The term o;; represents the knowledge of a node j that can be
reached within [ steps from node ¢, and the term o, o is the knowledge of node i. The above

representation suggests that for arbitrary L, Y; depends on D;(L) and {7}, X;,v,} for all

J € Uicr, Ni(1).
By Equation (41), we have Y; = Y ({D;}jen, ) {Tk: Xk, Vi fren, @), 1<i<2—1) Where we ex-

pand the structural equation L times. Let
Y;(a; L) = Y({a}jeNi(L)a {Tk> Xy, Uk}keNi(Z),lglqu) (42)

where we replace the value of D, by a for all j € N;(L). By definition of S, Y;(a, L) L Yj(a, L)
if £(i,j) > 2S. In addition, Assumption

For any s < 2S5 + 1, |Cov(f(Ya),9(YB))| < 4| fll|lgllc by boundedness of Y and f,g.
For s > 25 + 1,

[Cou(f(Y. ) g(YB))|
|COU( )+ F(Ya(@: [s]), 9(V))]
),9(YB))|
) = 9(Va(¥; [s])) + 9(Ya(¥; [s])))]
< |Cov(f(Va) - f<YA<*; 151, 9(Ys)| + [Cov(F(Va(@: 151)), 9(Vs) — 9(¥(: Ls))))|
(Cov(f(Ya(; Ls])), 9(Ys(7; [s]))) = 0)
< 2E[|f(Ya) = fF(Ya(@; s gl +2E[lg(Ys) — g(YB(@; [sI)I| flloo
< 2aLip(f) max E[|Y; — Yi(7: [s])[]llgllec + 2bLip(g) max E{[Y; — Y;(g; [s DI}/l
(f, g are Lipschitz functions with bounded Lipschitz constants)

< 2aLip(f)0n.s)|9lloo + 20Lip(g)0n.s]| £l
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which suggests that we can take ¢, ,(f, 9) = 4[aLip(f)||g]loc + OLip(9)|| flloo + || flloollglloo]-
In addition 6, , < £ FE[|Y;|] by Assumption 3.2, B.1. m

Corollary B.1 Assume that Assumption 3.2, B.1 hold. Then {D;}! , is 1-dependent with

1 s<2854+3
én,s s>25+3

Vas(fr9) = 4laLip(f)]|glloe + 0Lip(9)] fllse + I llsollgllso]

= o { BV = Y3 Lol e £, — Y3 (L5l

en,s =

and

S

Ous < EfYi]

1—+x

The proof is exactly the same as the one in Lemma B.1 and the change from 25+1 to 25+ 3

is due to the fact that D; is the average of nodes that are one-step away from <.

B.2 Technical Lemma

The assumption of bounded derivative also ensures that the effect decays at a geometric

rate, or faster, formalized by the following lemma.

Lemma B.2 Assume Assumption 3.2, 3.1, 3.3, 3.4 hold. At initial treatment T with T; = 0,
let Y be the corresponding knowledge. For treatment T* such that T =T;Vj#iand T =1,
denote the resulting knowledge as Y*. Then the following holds:

R K" 1 - - K* 1 . o
Y =Y < max — | |g(D;, 1, Xi,v;) — g(D;, 0, X;, v3)| < max — | [V;" — Y|

1 — Kk \k:Au=1ny 1 — Kk \kAun=1ny4

where D; = ﬁ Zj Aij?} and ¢ is the length of the shortest path connecting i, j.

Proof. Define Yy to be such that Yy = Yy if k # i and Yio) = g(Di, 1, X;,v;). Further
define Y,y = g(le(n,l), X, v). As shown in the proof of Proposition 3.2, |Yjm) — Yjm-1)| <
/@Aj|Yj(n_1) — Yj(n—2)|- This implies that |Yj@y — Y| = 0 for any n’ < £. Also,

/if

1Y 1) = Y(o)lleo

|
Y~ Yol < —— Yo — Yoo <
Y7 =Yiol < 7Y@ = Yenlleo < 5

— K

,ié

1 ~ -
_ ( masx —) (9(Dis 1, Xo, 1) — g(Di 0, Xs, )|

1 — rk \(k:Ai=1 ny,
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Lemma B.3 Let {Y;,W;, B;}_, be a set of random variables and let the bold-faced letter
denote the entire vector. For instance, Y = (Y1,Ys,---,Y,). Consider the conditional
expectation E[Y; —Y;|C(W,B,Y)] for some event C. Assume that the following holds:

E[Y; — Y;|C(W,B,Y)] = E[Y; — Y;|C'(W,B,Y_;;, h(Y;,Y}))]

J

for some symmetric function h(a,b) = h(b,a). Also assume that Y;,Y; are i.i.d. conditional
on B and’Y L. W conditional on B.

Then the conditional expectation equals zero:
BIY: — Y;IC(W, B, Y)] = 0
Proof.
E[Y; = Y;|C(W,B,Y)]
= E[Y; = Y3IC'(T, X, V_ij, h(V;, V)))]

C'(W,B,Y_;;, h(Y;,Y)))

()

=F ED/Z - X/j‘W7B7Y—ij7 h(%?‘/j)acl(waBaY—ijﬁ h(na}/;>>]

» =]

=FE|ElY; - Y;|W,B,Y_;;, h(Y},Y;)]

C'(W,B,Y_;;, h(Y;, Y}))}

y 4 » =]

= E|E[Y; = Yj|X, h(Y;, )]

C'(W,B,Y_;;, h(Y; Y'))]

((v:,Y;) L (W,Y_;;) conditional on B)

= FE|0|C'(W,B,Y_;;, h(Y, Y}))} (Lemma B.4)

=0

where the second last equality follows from substituting ¥; = V4,Y; = V; and X = S in

Lemma B.4. =

Lemma B.4 Assume the following holds for the variables V,,V, € R, S € RF and the
function h : R x R — R:

1. Conditional i.i.d.: V1, V5 are i.i.d. conditional on S
2. Symmetry: h(a,b) = h(b,a)

Then, under the above assumptions, the following holds:
E[‘/I - ‘/2|h(‘/17‘/2) = U,S = 8] = 0 \V/(U, 3)
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Proof. For any value ¢, define hy(V;t) :== h(t,V) and hy(V;t) = h(V,t). By symmetry, we
have hy(V;t) = hao(V;t).

It suffices to show that Vi, V5 have the same conditional distribution.

fvinoave),s(vu, s)

_ Fnnoie s uss) [s(s) Sviwava)s (Vs uls)
Jroa Vz)S(U s) fh(vl,VQ),s(u, s)” (V1,2)[S\Y
fs(s)
- v, V)s(u S) h(V1,V2)|V1,8 (U’U75)fvl\s(v|8)
1,V2 Y
fs(s)
h(V; V)s(u S) h(v,V2)|V1,8 (U\U,S)fvus(UIS)
1,V2 )
- h(Vi Ve )(2)(u s) Fu(varwy1s (uls) frags (v]s) (Vi, V4 are independent conditional on S)
1,V2 )
fs(s)
" Frinas(uns) Smvisons (uls) frays (v]s)
(V1, Vo are identically distributed conditional on S)
s
= Fo {j)(s)(u s)fhz(v1;v)|S(u|S)fV2\s(U|S) (h1(Vi;v) = he(Vi;v) by symmetry)
fs(s)
N Jroviw),s(u s)fh(VI’V2)|V2’S(u|U’x)fVQIS(U|3>
fs(s)
B Jroviw),s(u s)fVQ’h(Vl’V2)|S(U’u|S>

= fV2|h(V1,V2)7S(U|u7 S)

We have shown that Vi, V5 has the same density conditional on (h(Vi, V5),S), which implies

the desired equality in first moment. m

Lemma B.5 Assume the following holds for the variables Vi,Va € R, S € RF and the
function h: R x R — R

1. Conditional independence: Vi, Vs, are independent conditional on S
2. Symmetry: h(a,b) = h(b,a)

3. Near identical distribution: sup, |fv,|s(v|s) — fuzs(v]s)] <€

4. Bounded density: 0 < f <inf fy,5(v]s)

Then, under the above assumptions, there exists some constant C such that the following
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holds:

B[V — Valh(Vi, Vo) = u, S = s]| < §1E[v1\h<m,w> —u, S = s]| V(u)

Proof. For any value ¢, define hy(V;t) = h(t, V) and hy(V;t) := h(V,t). By symmetry, we
have hy(V;t) = ho(V51).

It suffices to show that Vi, V5 have the same conditional distribution.

|fV1|h(V1,V2)7S<U‘u7 5) fV2\h V1,V2), ( |u 5)'

__ Js(9) P Va5 (Ul )| fras(v]8) = fras(v]s)] (Proof in Lemma B.4)
h(V1, VQ) s\u )

(u,
(8)( )fhl(V2§U)|S(u’S)E

- fh (i, VQ)S u,s
Fais(vls)
|

- fs(s) "
= )fhl(Vz;v)IS( s )fvz\ ©

»

h(Vi, V2 s(u,s s)
< fs(s) f s(v,uls) (1 + E) (bounded density)
= fh ) s(% S) Va,h(V1,V2)] ) i y

€
— fv2|h(V1,v2)7s(v|u7 s) (1 + ?>
The result follows from
’E[‘/I - ‘/2|h<‘/17 ‘/2) =u, S = S]l S |/U‘fV1|h(V1,V2)7S(U|U, S) — fV2|h(V1,V2),S<U|u7 S)|d’U‘

€
<| / s it (ol )

|[EVi[h(V1, V2) = u, S = 5]

I\Im

Lemma B.6 Let Assumption j.1, 5.1, 5.5 hold. Further assume that the kernel K, has
bounded support. Then the following holds:

( 0 ) o) (13

i=1 j#i

Proof. Define the following objects:



Firstly, Var(M;) < Cy for some constant Cy; by the boundedness of E[|vi]*|A;, X;] in
Assumption 5.1, and that Zj wij = 1, w;j > 0. For the covariance, first realize that
Cov(M;, My) = 0 for any k € N2(i;s) with s > 5.

Cov(M;, My) = Cov (Z mﬁj,Z”%l)

j#i 1k

By the conditional independence assumption on v; in Assumption 4.1, Cov(m;;, my) # 0
only under the event {i =1} U{k = j}U{j =1} (i.e. there is overlapping in the index). For
any k € N2(i;s) with s > 5, it must be that w;; = 0 and wy; = 0 for n large enough since
they share no node in common and that K; is compactly supported. It remains to consider
the case where {j = {}. For w;; # 0, it must be that j be at most 2-step away from ¢. This
is because 7, j must share common links for w;; # 0. Similarly, for wy; # 0, [ must be at most
2-step away from k. However, when k € N?(i; s) with s > 5, there is no node that is within
2-step away from both ¢, k. Thus the covariance term equals zero.
It follows that

_ZZ |Cov(M;, My,)| ZZ Z |Cov(M;, My)|

i k#i i s=1 keN2(i;s)

=$ZZ S [Cou(M;, M),

i s=1 keN2(i;s)

(Cov(M;, My) = 0 for any k € N2(i;s) with s > 5)

Z Z Z 2C (Cauchy-Schwarz inequality)

i s= 1k€Nazs)

1 1
<20y— Y — Y |NP(;
<20y LS o

4
1
= QCME 252(3; 1) =0(1) (by Assumption 5.5 and x € (0, 1))
=1

Therefore,
Var (%z”: Z) e ZVCLT —i—ﬁZZCOU M;, My,)
i=1 i kA
ZOM+—Z§|OOU M;, My)| = o(1)
]
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Lemma B.7 Assume that Assumption 5.2, /.1, 5.1 - 5.6 hold. Further assume that As-
sumption 5.7 or Assumption 5.8 holds. For any q, L,(g;b) EN L(q) + C for some constant
C' independent of q.

Proof. For the proof, I will write %Z?:l instead of % > ic7 for ease of notation. The
intuition remains the same since |7 also diverges.

Define the following quantities:

ma; = [|T; — Tj|mr(Dy, X;) — |T; — Tjlq(D;, X;)]
Moz = [Q(DuTjan) - Q(DjaTjan)]
mg,ij = [(Ti — Tj)(vi — v;)]

Expand L,:

Ln(q;b)

= =SS — T - V) — 1T = Tila(Dy, X

i=1 j#i

n
2 2 2
= — E E (M3 45 + My + M3 + 2maiyma i + 2ma M i + 2ma i5ms ijlwi;
i=1 j#i

Step 1: First show that the cross term % Do ;0,313 Wi vanishes. This is carried out
in two steps. In Step 1.1, I show that X " D izilmaimajwis — Elmaigma iwij]] = o0p(1)
through L? convergence. In Step 1.2, I show that E[my;jmswi;] = o(1). It is useful to

rewrite the summation as follows:

n
P9
- 1,513,455 Wij
n J ]

i=1 j#i

- XD X) =D X0) = T =)

jITj:O
Define the following objects:
Y (Aiy Xi) Z VjWij
V(A Xi) = [Uj|Aj =4, X; =X, T = 0]

Notice that ’Y(A“Xl) = E[]}’U]’AJ = Ai,Xj = Xl] = E[EU]‘AJ = Ai,XJ’ = Xi, Dj = Dz] SO
we could equivalently think of it as v(A;, X;, D;).
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Step 1.1: The following result holds:

1 n
n Z Z[ml,ijm&ijwij - E[ml,ijm?),ijwz‘j“

i=1 j#i

= 3 (D, Xo) = a(Di X))ot~ 1A, X0 = BITrr(Ds, X0) = (D X))o = 2 (A, X))
= op(1)

The convergence result follows from the following L? convergence argument: Assumption 5.1
implies that

%

Var (% > 70Dy, Xi) = q(Dy, Xi)[(vi = Yan (A, Xi))]) < 4yVar (% > (i = yan(A, Xi)))

%

=o(1) (Lemma B.6)

This implies that Var(2 ", (7r(D;, Xi) — ¢(Di, X;))[(vi — v2.0(As, X5))]) — 0.

Step 1.2: Now show that E[m;;ims;;w;j] = o(1l) under either Assumption 5.8 or As-
sumption 5.7.

Step 1.2.1: Consider first the case where Assumption 5.7 holds. Define w; = w;1{A; =
Aj [1Xi = Xjl2 < C70}.

wj — @; = w;L{A; # Aj, [ Xi — Xjll2 < C'0} + w; 1{[|X; — X;l2 > C'b}
=w; 1{A; # A;, | Xi — X2 < C'b} (compact support of K5)
However, since K; has compact support and A; has finite support, Kl(%) = 0 for any

A; # A for n large enough. As a result, w; — @; = 0 for n large enough.

These imply that

Elvi = yo0(As, Xi)|Ai, Dy, Xi] = E | > @ju — Y @] Ay, DiaXi]
J J
(by >_,;w; =1 for large n)
= E | Y @B — | A = Aj, Xi, X5, |1 Xi = X, < C', Di“AiaDiaXi]

L J

(@; =0 for A; # Aj or ||X; — Xj|l2 > C'b)

=F ZUNJJE[UZ - Uj|Ai = Aj,Xi7Xj, ||‘XrZ - Xj”g S C/b, v; + Uj]lAiniaXi]
L J

(D; depends only on v; + v; when A; = A; by the identification argument in Proposition 4.1)
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Applying Lemma B.5, we have
|Evi — v2,n(Ai, Xi)| A, Dy, X

< E Y @51 Bloi — vl A = Ay, X, X5, [1Xs = Xlla < b, v+ 0] | As, Dy, X

< E | &yl Bloil Ai, Xo, 0, + vj]\?\Ai,Di,Xi (Lemma B.5)

L J = N

<E | @E[vil \AZ,XZ,UZMJ] |Ai, Dy, Xi| = E Z@EnwrrAi,Xi,Di]%rAi,DZ-,Xi]

L J i J

(condltlonal independence as argued in Proposition 4.1)

= El|vi||As, X, Dy (by >, @ =1)

[~13

where | fv; 4, x, (V|a, ) — fv;)4, x; (v|a, 2")| < n for any ||z — 2’|, < C'b. To apply Lemma B.5,
I’eplace ‘/17 ‘/2 by U“/Uj, h(%?%) by (%1 + U2, S by (XZ’ ||XJ - XZHQ)
These imply that

|E[T3(rr(Ds, X) — a(Diy X)v: — Y2 (As, X0

= |E[T,(70(Dy, X:) — 4Dy, X)) [Elvi — yo.0l Ai, D, Xl
< E[|Ti(rr(Ds, Xi) — q(Di, Xi)) || Evi — v2,n] A, Diy Xil|]
< B||Ty(rr(Di, X) — q(Di, X,) |EUv@-||Ai,Xi,Din§

= F||T;(tr(D;, X;) — q(Di, Xi))||vi]] (Law of iterated expectation)

[~13

< HTT(DiuXi> - Q(Di,Xz')HooE[U?] = 0(1)

1
I
The o(1) result holds since 77 can be made arbitrarily small. Therefore, E[my ;;ms ;;w;;] = o(1)

as desired.
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Step 1.2.2: Now consider the case where Assumption 5.8 holds. Then we have

E[Ty(mr(Di, Xi) — q(Di, X)) [vi — 72,0 (Ai, X3)]]

< B |Ty(rr(Dy, X;) — q(D;i, X)) Zwmﬂ{sw < Cbjvi — > vjwiil{s; < Cb}”

_ (support condltlon on K; imposed by Ass]umption 5.8 and ) w; =1)
= E | ) Twij1{sy < CL}E[(rr(Di, X;) — q(Dy, X)) (vi — v7)| A, A;, E,E:Xian]]

L J

<F []1{51']‘ < Cb}tl<8”)] (Z] Wij = 1)
= o(1)

The convergence result follows from point 1 of Assumption 5.8. In addition 7r(D;, X;) —
q(D;, X;) is a Lipschitz function with respect to D; for any Xj.

Step 2: Next show that the terms involving my ;; vanishes almost surely. By Assumption
3.2, 5.2, myy; < Lip(z)(X; — X;) + r(D; — D;). In addition, |D; — D;| < 5,25+ (A; — A;)'v
It follows that

Imaj| < |[Lip(x)(X; — X;)| + 268459 + K|(A; — 4;)'v]

Define my ;; = |Lip(x)(X; — X;)|+2ks;;y. For an arbitrary e, there exists a pair (d,, d5) such
that |mg ;| < € if |X; — X;| < d, and s;; < §5. However, b — 0 implies that w;; — 0 for any
| X; — X,| > 0, or s;; > d5. Since b — 0 as n — oo, there exists n, such that b < min{d,, ds}
for all n > n.. This implies that for any n > n.:

Z Z m2 i Wi <= Z Z |m2 ZJWZJ|

i jFi i JFi
= ZZ ‘mQ [ijWig ﬂ{yXl o XJ’ < 5I>Sij < (56})|
1 jF
1
S B IR
T

Therefore, P(’% D00 iz My wij| > €2) = 0 for all n > n.. By the Borel-Cantelli Lemma, it

follows that
1
P ( !
n

=2
2.0 Mty

1 jFi

> €2 infinitely often) =0
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Since € is arbitrary, we have

1
_9 a.s.
E E E mQ,ijwij —0

1 jFi

I show convergence in L? norm for the term involving |(A; — A;)'v|. Define

= [(A = Aj)vwi PR =y

J

It follows that

1 2
w2 T
— ZER2 +—ZZERR

1 j#i
= o(1)

ZZ| V‘2le

1 jFi

The last equality follows from two arguments. First, as in the proof of Lemma B.6

% > ) E[RiR))

i J#

= o(1)

Second, E[R?] is bounded, which ensures -5 >, E[R?] = o(1).

The convergence in probability result thus follows:

LSS | <2 T e
i i U
3SR = Ay v
i jF#
5o

The same analysis applies to £ =y i i T2, ijwi; by bounding my ;; using Assumption
5.1.
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Step 3: I show that £ ", > jei(mi wij — E[mi jwi5]) = op(1). However, notice that

B3 S i ] = El(rr(Di X0) — a(Ds X)))i € 7]
=1 j#i
by > ;wij = 1. The desired result hence follows.

To show the first convergence result, it suffices to show that Var(L 3" > i M 40i5) =
o(1). This follows from the proof of Theorem 3.1 in Kojevnikov et al. (2021). To apply the
result in Kojevnikov et al. (2021), I verify that the assumptions hold. By Corollary B.1,
D; is 1-dependent with 6, = Ck® where C' is some constant. In addition ¥, (f,g9) =
4laLip(f)]|gllee + bLip(g)|| flloo + I flloollglloc] satisfies Assumption 2.1 in Kojevnikov et al.
(2021). Assumption 3.1 and 3.2 in Kojevnikov et al. (2021) are implied by Assumption 5.1,
5.5. Finally, 7, q are both Lipschitz.

Step 4: %Z?:l Z#i m;ijwij 2, C where C is some constant independent of ¢. To
show this, it suffices to show that its variance tends to zero. Define M; = 3., M3 Wis.
Firstly, Var(M;) < Cy for some constant Cy; by the boundedness of E[|v;|*|4;, X;] and
that Zj wij = 1, w;; > 0. For the covariance, first realize that Cov(M;, M) = 0 for any
k € N2(i;s) with s > 5. To see this, first recall that mz;; = (T; — Tj) (v; — v;).

Cov(M;, M) = Cov (Z m3 ;Wij, Z m;klwkl)

J#i £k

By the conditional independence assumption on v;, Cov(m3 ;;, m3 ;) # 0 only under the event
{i =1} U{k = j}U{j =1} (ie. there is overlapping in the index). For any k € N2(i;s)
with s > 5, it must be that w;; = 0 and wy; = 0 for n large enough since they share no
node in common and that K is compactly supported. It remains to consider the case where
{j =1}. For w;; # 0, it must be that j be at most 2-step away from ¢. This is because, i, j
must share common links for w;; # 0. Similarly, for wy; # 0, [ must be at most 2-step away
from k. However, when k € N?(i; s) with s > 5, there is no node that is within 2-step away

from both 7, k. Thus the covariance term equals zero.
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It follows that

_ZZ ’COU MzaMk ZZ Z ’OOU szMk”

i k#i i s=1 keN2(i;s)

=3 S icon(u )

i s=1 keN2(i;s)

(Cov(M;, My) = 0 for any k € N2(i;s) with s > 5)

Z Z Z 2Cy (Cauchy-Schwarz inequality)

i os= 1kENazs)

< QCME Z o 21 N2 (35 )]

%

4
1
= 2CME 252(3; 1) =o(1) (by Assumption 5.5 and k € (0,1))
—1

Therefore,
Var (%i ) ~ ZV@T ) + EZZCW M;, My,)
i1 i ki
ZOM+—Z§|COU M;, My)| = o(1)
|

B.3 Proof of Results in the Paper
B.3.1 Proof of Proposition 3.1

Proof. Denote Y 4 (t), A (t) as the resulting value of Y (4, A(s) defined in Example 3.5 as
a function of the treatment assignment t.

Only if direction: 77(AY)'t; > 77(AY)'ts implies that 1’A)(t1) > 1'Ag)(t2). Since A
is fully connected, this implies that AA1)(t1) > AA)(t2) (element-wise comparison). Since
Yoy (t1) — Ay (t1) =Y = Y(1)(t2) — A)(ta), the above implies AY (4)(t1) > AY (3)(t2). By
Assumption 3.4, this implies Y (9)(t1) > Y(9)(t2). Perform induction along this along and we
have Y ) (t1) > Y (5 (t2) for all 5. Since Y7 = lim, Y(5)(t1) and Y3 = lim, Y ) (t2), it follows
that Y{ > Y3. However, using the same argument, we can also show that A (t1) > A (t2)
for all s, which implies Y7 > Y3 by the infinite sum representation.

If direction: suppose 77(AY)'t; < 7p(AY)'ty, the above proof shows that 1'Y? < 1'Y3,
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a contradiction. m

B.3.2 Proof of Proposition 3.2

Proof. Write the knowledge equation in matrix form: Y = g(D, T, X,v) = g(AY, T, X,v)
where A is the row-normalized version of A. The existence and uniqueness of the reduced
form can be framed as the existence and uniqueness of the fixed point of Y = g(le, T, X, v).
For some starting value Y gy, define Y,,) == g(le(n,l), T, X,v).

By the mean-value theorem and boundedness of the derivative gg_ < k < 1, we have

that for any i:

|g<AY7 E?Xia Ui) - g(AY*7E7 Xi7vi)| = ’a%g(jzl?7ﬂu XM/UZ)Al(Y - Y*)|
K
< | ) Ay(Y; = Y))
Zj Aij XJ: Y ’
K
< Aij| (Y5 = Y7)|
Zj Aij ; Y ’
K . .
< D AGIY =Yoo = £I(Y = Yl

(]

Jjoy j

This implies
Hg(AY, T7X7 V) - g(AY*, T7 X?")HOO < KJH(Y - Y*)HOO

is a contraction for any realization of T, X, v under the distance induced by the /., norm.
By the Banach fixed point theorem, there is a unique fixed point.

Consider two treatment vectors T, T* such that T; = T for all ¢ # j and T; = 0,7} = 1.
Denote the resulting knowledge as Y = r(T,X,v) and Y* = r(T*, X, v). For two vectors
a,b, define a < b as a; < b; for all ¢ with strict inequality for at least one i. By definition,
Y = g(AY,T,X,v). By Assumption 3.3, Y < g(AY,T* X,v) := Y(;). By Assumption
34, Yo = g(le(l),T,X,v) > g([lY,T,X,V) > Y. By induction, we can show that
Y () > Y for all n. As argued above, lim,_,« || Y ) — Y*||oc — 0, this implies that Y* >Y.
By Assumption 3.3, Y < g(AY,T* X,v), which implies that Y* > Y.

The above proof only uses the fact that > ; /L-j =1 and /L-j > 0 and thus also holds for

any row-normalized matrix B with non-negative entries. m

B.3.3 Proof of Proposition 4.1

Proof. Let g(T,X,A,V) = {Akz = Ak] Vk,ﬂ = 1,1—’] = O,D] = Dz = d, )(Z = XJ = IE}

denote the conditioning event.
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Substituting the additive separability structure in Assumption 4.1:

E[Y; - }/}‘S(T7X7 A,V)]
=g(d,1,2) — g(d,0,z) + EJv; — v;|E(T, X, A, V)]

To complete the proof, I apply Lemma B.3 to show that Efv; — v;|E(T, X, A, v)] = 0. To
this end, I show that the following holds:

g(T, X, A, V) = g/<T, X, A, V_ij, h(?]i, 'Uj))

h(vi,v;) = v; +v;

which is equivalent to showing D; = D; = d can be written as a restriction on T, X, A, v_;;, h(v;, v;).
This is because D; = D; = d is the only restriction in £(T, X, A, v) that involves v;, v;. After
this, substituting v; = Y;,v; = Y;, T = W, (X, 4;, A;) = B,v =Y, h(v;,v;) = h(Y;,Y;) in
Lemma B.3 yields the desired result.

For simplicity, consider first the case where nj, = 2 for all k such that Ay; = Ag; =1 (i.e.
all common neighbors of 7, j have only two degrees). Then, conditional on other restrictions
in £(T, X, A,v), the event D; = D; = d can be written as:

d=Di=Dj=— Y §(Dy, T, Xp,v0r) (Ag; = Ay; for all k conditional on £(d, 7))
n;
k?Ak;,Ak]:l

1 - -
=— Z 9(AYi + A Yy, Thy X, vr) (ng=2)

T A Ay =1
(A Agj=

1 1 1 1
= E g (_(Ui+vj)+_g(d717x>+_g<da07x)7Tk7Xk7vk)
N N N

A . — A, — L i
(Agi = Ag; = o by assumption)

1 1 1 1
= Z g (_h(vi7vj> +_g(d7lvx)+_§<d707x)7Tk7Xkavk)
T; _1 N N T

(h(vi,v)) = v; + v;)

This implies that D; = D; = d can be written as a restriction on T, X, A, v_;;, h(v;,v;),
which is the desired result.

For the more general case, conditional on other restrictions in £(T, X, A,v), the event
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D; = D; = d is equivalent to

n,d: Z g (d/ +_ ZAkq Tk,Xk,Uk)
k:AgiAgj=1 CI#ZJ

1
d), = n—(g(d, L,z) +g(d,0,z) + v; + v;)
k

L G(d,1,2) + §(d, 0, 2) + h(v, v))

nk:

As opposed to the ny = 2 case, there is an additional term ni > e ApyqY, which depends

on the knowledge of nodes linked to neither ¢ nor j. We want to show that it is a function
of h(v;,v;) and T, X, v_,;.

9 (dh+ 22 0y AnaYer T X vr) Aui = Agy = 1

Y, =
(£ 52, ArgYo T, X vr) Ay = Ay =0

Qi

Since |g—g| < K < 1, this system has a unique reduced form that depend only on d) and
{ Xk, T, v i ; as in the proof of Proposition 3.2. This implies that D; = D; = d can be

written as a restriction on (h(v; +v;),v_;;, T,X). =

B.3.4 Proof of Lemma 5.1

Proof. Define A as a diagonal matrix with entries A; = %g(Di, T;, X;). I present the proof

under the definition of

LA =)l

Sij
Milg.,, >0 Nk
The result for the version of s;; defined in Equation (22) follows immediately by the assump-
tion of %}’:Z: < C.
In the subsequent proof, it is assumed that s;; > 0. If s;; = 0, we have Ay; = Ay; for all
k and Proposition 4.1 shows that E[l(D;)(v; — v;)] = 0.

When Ay, = Ay; for all k, the identification argument in Proposition 4.1 shows that D;

depends on wv;,v; only through the quantity v; + v;. In other words, 8D — = 0. To

811
arrive at the desired result, I show in Step 1 that |%€ : S” . In Step 2, I show that

[EI(D:) (v = v)]l = O (%)

Step 1: The vector Y satisfies a system of nonlinear equations:

ZAZJYJ,T X)) —vi=0 Vi
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Let J be the Jacobian matrix with ¢j-th entry g{;?. One can show that J = I — AA. J is
invertible since it is diagonal-dominant by Assumption 3.2. Let A(4, j) = {k : Ap; # Ai;}-
The I-th entry of the vector AA(u(i) — (j)) satisfies the following inequality:

IAAGG) — o) = ‘%Auw Ay

1
< k—1{A; # A} (|Akk| < Kk by Assumption 3.2)
n
1
< . . i3 g
< F&mink - 1{A; # A;} (definition of s;;)
1
= RSZ] ]L{Alz 7é Al]}

A, )

This implies that

ALY (i) — ()] = AAA)AAGE) - o))
< K AAAAQG) — 1))
<mSA'1Z|AA (i) — ()

<k Z/{s” \A IL{AZZ # A}

The first inequality follows from two separate argument. First [Av| < AJv| (element-wise
comparison) for any vector v since A has non-negative entries (the absolute value is taken
with respect to each element in the vector). Second, |A;| < k by Assumption 3.2. The second
inequality follows from the observation that A® is the s-th power of a Markov transition
probability matrix A. As a result, the k-the entry of the vector Av is bounded by [flsv] <
>_; lvj| for any k and any vector v. In vector notation, this implies Ay <1 > vl

It follows that

oD;  0D;| I Y 0y
81)2' an N ‘ Ovi (%j
= [ALT7H(u(6) — ()] = [ AT — AA) T (e(@) — ()]
(Implicit Function Theorem)
= |2 AA ()~ 1))
1=0
< imss =
Il Y1k
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If ™k < (7 for some constant C, the above bound holds by observing that —

ming ng ming ng —
C

min{n;,n;}"

Step 2: One can write D; as D;(v;, v; +v;,v_;;, T, X, A). Since v; +v;,v_;;, T, X, A will

be conditioned upon, we write it as D;(v;). Let D = DZ(WTUJ

event v; +v; =0, X, T, A, v_j;

). Denote &£ as the conditioning

(D~ wy)E]l = |EIUD,) ~ 1D) + D))o~ )I€]
= [BIUD,) ~ D))~ v)IE] + EUD) i —v)IE]
= |E[((D;) — (D)) (v; — v;)|€]] (Lemma B.3)
< E(I(D.) ~ D) s — vy €
< & |Liplt) |50 = 52 s = e

< Lip(l) 7= Bljui]jv; — ;][]
11—k
The law of iterated expectation then yields the desired results:

|E[L(D;)(vi — v;)|Ai, Az, Xi, Xj]| < E[|E[I(Ds) (v — v))| A, Ay, X, X5, E| A, Ay, X, X
E[(Ds)(vi — v))|E][|Ai, Az, Xi, X

(The event & includes A4;, A;, X;, X;)

E
E

. Sij
< Lip(h)7=—E[E[lvil[v; = v;{|€]]Ai, A5, X, X;]

. Sii
= Lip(l) N JKEH%H%' — ;|| A, Ay, Xy, X

< L@p(nlimv; + v |4, Ay, X, X5

(triangular inequality)
< Lip(1)7== E[207 + 0| Ai, Aj, X;, X))

(Cauchy Schwarz inequality)

The desired result follows from the uniform boundedness of E[v?|A;, X;]. =

B.3.5 Proof of Corollary 5.2

Proof. Define A as a diagonal matrix with entries A;; = n%é% g(D;, T;, X;). In the subsequent
proof, it is assumed that s;; > 0. If s;; = 0, we have Ay; = Ay, for all k and Proposition 4.1
shows that E[l(D;)(v; — v;)] = 0.

To arrive at the desired result, I show in Step 1 that |%—i)j — %—fﬂ < L. In Step 2, I show
that [E[l(D;)(v; — v;)]| = O ().

1-k
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Step 1: The vector Y satisfies a system of nonlinear equations:

=Y, — gZAYTX v; =0 Vi

YENE

Let J be the Jacobian matrix with ¢j-th entry 3 8fl One can show that J = I — AA. J is
invertible since it is diagonal-dominant by Assumptlon 3.2. Let A(4,7) = {k : Api # Ax;}.
It follows that

- (0Y 0Y
¢ (81}1 8vj ) ‘

= [ALT 71 (ul0) = ()] = [ AUT = AA)TH (D) — o)

(Implicit Function Theorem)

oD; 0D,
an 8vj

A Z(]\A)l(b(i) —uj))

A — A Sl -
< | Aii — i + Z A ||2 || (AA) (e(i) — 0(4))]]2 (Cauchy-Schwarz inequality)

< Al S AR IAGG) )

)

(definition of matrix norm)

|A“_ - 1 -1 -1 ;
< —" +;\/EIAH FAI () = ()2

(for two matrices C, D: ||CD|| < ||C|IIID]|)

|A” — Al]| 1 K -1 I—1 . .
<
= n i - ming 1y AN A = ()2

CIE
A”—Al 1 > K -l _ .
<l Ly () i VIAGD)
kT

T Vi =1
(by [[A(e(d) — c(i)ll2 < VIAG 9)])

ming ng )

1 \«4(@' J’)\ 1
T 1—[[A]

1
= VT

mm;€ nk

ming ng

If 2226l < (7 for some constant C, the above bound holds by observing that

ming ng ming ng —
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c

min{n;,n;}"

Step 2: One can write D; as D;(v;, v; +v;,v_;;, T, X, A). Since v; +v;,v_;;, T, X, A will
be conditioned upon, we write it as D;(v;). Let D = Djy(
event v; +v; =0, X, T, A, v_;;

Vv

=5-). Denote £ as the conditioning

BIUD) s — €] = 1B ~ 1) + D))~ v)IE)
= [B[U(D) ~ D)o ~ vy)IE] + BIUD): — v,)E]
= |E[((D;) — (D)) (v; —v;)|€]] (Lemma B.3)
< BII(D) ~ (D)l —v,I]
< £ |in()| 5ot = G sl = e

. 1
smmoGU+w%me,ﬁ )mmmrwma

ming ng

The rest of the proof follows in exactly the same way as in Lemma 5.1. =

B.3.6 Proof of Theorem 1

Proof. T apply Theorem 3.1 in Chen (2007) to establish consistency of the proposed esti-

mator.

Condition 3.1: By the identification argument in Proposition 4.1,
q = 1r(D;, X;) = arg miél L(q) (45)
qe

In addition, for any ¢ such that d(q,qy) > €, we have L(q) > e. Condition 3.1 is satisfied
with §(k) =1 and g(¢) = e.

Condition 3.2 and 3.4 are implied by Assumption 5.6.

Condition 3.3 holds since L(q) is continuous w.r.t in the L? norm. Condition 3.3 (ii) is
implied by this continuity result since liminf, 6(k) > 0.

Condition 3.5 (i): I apply Theorem 2.1 in Newey (1991) to establish the condition.
Assumption 1 in Newey (1991) is implied by Assumption 5.6. Assumption 2 is the result of
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Lemma B.7.

Ln(q;b) — ZZ (T; — T;)(Ys — )| Ti — T;|[G(Ds, Xi) — q(Ds, Xi)|wi;
=1 ];éz
+ - ZZ Dz;X (Di,Xi)}Wij
i=1 j#i
2 )
< SN T = TG = IT = Tilla = Gl
i=1 j#i
l 3
+;ZZHQ—QH§O%‘
i=1 j#i
2 — ) i
= =3I =T = V) + Yeylg = @ll(1 + g = 1)
i=1 ji

Let B, = 25", 122l (T = T5)(Y; — Yj) + Hw;;. Assumption 3A in Newey (1991) requires
that B, = O,(1). To show this, notice that

%sz = Tj)(Yi = Yj)wij| < 8%22 (Y = Yj)wi]

=1 ji =1 j#i
= 8- ZZ| (D, T3, Xi) — 9(D;, Tj, X;5) + vi — vj)wyg|
=1 j#i
< 8— ZZ| (D5, T;, Xi) — 9(D;, T, X)) wis| + [(vi — vj)wi]
i=1 j#i
< 16]y| + 8 ZD 0;)wi
i=1 j#i
(By boundedness in Assumption 5.1 and > w;; = 1)
= 0,(1) (By Lemma B.6)

In addition, by the norm inequality, ||¢ — ¢llcc < |l¢ — G||2 since Qy is a finite-dimensional
space. These imply that Assumption 3A in Newey (1991) is satisfied. Equicontinuity of L(q)
holds by the same argument as above. Assumption 3A and Assumption 1, 2 in Newey (1991)
implies the required conditions for Theorem 2.1 in the paper.

As pointed out in Chen (2007) (page 42), liminf; §(k) > 0 implies that Condition 3.5
(iii) is automatically satisfied and Condition 3.5 (ii) is implied by Condition 3.5 (i).
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