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Abstract

When individual outcomes depend on peer outcomes, treating an individual in a

network affects all connected individuals. This causes the absence of a control group

and threatens the validity of causal inference. Existing methods assume linear func-

tional forms and exogenous networks, or exclude the dependence on peer outcomes.

By introducing a nonparametric peer effect model, I prove that the treatment effect

is identified by comparing individuals with the same neighbors but different treatment

status, which does not rely on the above assumptions. Estimation is performed using

a combination of a kernel estimator, which relaxes the identical-neighbor condition in

finite samples, and the method of sieves. The consistency of the proposed estimator

is then established. Application of this method to an anti-violence campaign suggests

that the effect of the campaign on individual attitude is increasing in the average

neighbor attitude.
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1 Introduction

I study the identification and estimation of the treatment effect under network interference.

The interference operates through endogenous peer effects (Manski (1993)), allowing indi-

vidual outcomes to depend on peer outcomes. Treating an individual thereby affects every

other individual in a connected network, leading to the absence of valid control group. For

example, Cai et al. (2015) provide information on a weather insurance product to randomly

selected farmers in villages, who spread the information to their peers. However, one may

expect the communication process to continue and the treatment thus affects all acquain-

tances of the treated farmers. Comparing the outcomes of treated and untreated farmers

may give biased estimates of the treatment effect due to the informational spillover.

Existing methods related to this problem rely on strong assumptions. One approach

is to assume linearity and construct instrumental variables (IV) under the assumption of

exogenous networks (Bramoullé et al. (2009)). However, the linearity assumption is restric-

tive, and also, people with a stronger desire for information may form links selectively, which

causes the network to be endogenous. Banerjee et al. (2024) show that the network structure

can be directly affected by treatment assignment, which also points towards the endogene-

ity of networks. Another approach is to assume that the spillover propagates only in short

distances and depends only on the treatment assignment. However, in typical models of en-

dogenous peer effects, the spillover propagates to distant agents and depends on the shocks

of other agents. More detailed discussions are in Section 2.

To address this problem, I construct a nonparametric peer effect model and define the

treatment effect as the difference in expected outcome conditional on the average outcome

of peers. Under the additively separable error assumption, I provide a novel identification

argument of the proposed treatment effect by comparing individuals with the same neighbors

and different treatment status. This argument allows for endogenous networks and the

dependence of the treatment assignment on networks, thereby allowing for some endogeneity

of the treatment. A consistent nonparametric estimator of the treatment effect is then

constructed. In more detail, the paper proceeds in three steps.

In the first step, I model the individual outcome as a nonparametric function of the

average neighbor outcome, treatment status, and observed characteristics. The spillover is

modeled as the average neighbor outcome, a low-dimensional statistic, which is similar to the

literature on peer effects.1 The flexible functional form allows for rich interaction between the

treatment and spillover, and individual heterogeneity in terms of observed characteristics. I

1For example, the average is adopted in Calvó-Armengol et al. (2009), maximum appears in
Tao and Lee (2014), minimum is modeled in Bietenbeck (2020), a CES-type aggregator is studied
by Boucher et al. (2024), and the quantile is analyzed by Houndetoungan (2025).
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then define the treatment effect of interest as the difference in expected outcome, fixing the

level of average neighbor outcomes and observed characteristics. This relates to the optimal

treatment assignment and reveals the relationship between treatment and spillover. For

example, when the treatment effect decays with the average neighbor outcome, substitution

is likely present.

In the second step, I prove that the proposed treatment effect is identified by compar-

ing individuals with the same neighbors but different treatment statuses. The endogeneity

of the average neighbor outcome intertwines with the nonparametric functional form, pos-

ing identification challenges. This is further exacerbated by the concern for endogenous

networks, which limits our ability to find IVs. I solve this problem by comparing individ-

uals whose shocks are correlated with the average neighbor outcome in the same manner.

More specifically, under the additively separable error assumption, I show that the average

neighbor outcome depends on the shocks of these individuals through a symmetric statistic.

The equality in conditional mean of the shocks is then established, leading to identification.

Since I am comparing individuals endogenous in the same way, the method can accommo-

date the endogeneity of networks, individuals characteristics, and the treatment assignment

as a function of the endogenous networks and characteristics.

In the third step, this paper provides a nonparametric estimator of the treatment effect

and establishes its consistency. The identification argument compares individuals with the

same neighbors, which may lead to few observations in finite samples. However, standard

multivariate kernels provide insufficient smoothing because the dimension of the set of neigh-

bors grows at the same rate as the sample size. I tackle this problem by smoothing with

respect to a low-dimensional variable defined as the ratio of the number of different links to

the degree. Next, I relate this ratio to the degree of endogeneity, thereby quantifying the

order of the bias from smoothing. A kernel estimator is then adopted to relax the same

neighbor condition in finite samples, and the method of sieve is used to flexibly model the

treatment effect as a function of the spillover and individual characteristics. Another chal-

lenge is the dependence across observations due to the endogenous peer effects. I solve this

by adapting the framework of network ψ-dependence studied in Kojevnikov et al. (2021).

The consistency of this estimator in L2-norm is established.

The performance of the estimator is tested in simulations. Results show that the L2 loss

decreases with the sample size, which confirms the consistency of the estimator. Although

theory predicts that small bandwidth reduces bias, simulation result suggests that it may

lead to higher L2 loss, potentially caused by larger variance. Fitting too many basis function

may also increase the loss. The above findings are most pronounced near the boundary,

which is likely due to the small number of observations near the boundary.

The method is then applied to the data from Paluck et al. (2016) who studies the effect
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of anti-violence campaigns in schools. An index of individual attitude against violence is

constructed as the outcome variable. The index is constructed such that students with more

optimistic views of the degree of violence in their schools and more positive attitude towards

anti-violence acts get higher score. The result suggests that the treatment effect is increasing

in average neighbor attitude, which can be viewed as complementarity. Students may be

further encouraged by their friends having more positive attitudes.

The paper is organized as follows: Section 2 reviews the related literature. Section 3

describes the model, establishing the existence and uniqueness of the reduced form and the

structure of the reduced form. Section 4 studies the identification of the causal effect of

interest. Section 5 discusses the estimator for the causal effect and its consistency. Section

6 provides simulation evidence and Section 7 applies the method to empirical data. Section

8 concludes. The figures and tables are collected in Appendix A. The technical lemmas and

proofs of the results are in Appendix B.

2 Related Literature

This paper is related to the strand of literature studying the identification in peer effects

models using mean restrictions. Using a linear-in-means model, Manski (1993) argues that

the reflection problem hinders identification of group effects while the coefficients of indi-

vidual characteristics directly affecting outcomes are identified. This paper shows that the

identification of the effect of individual characteristics (treatment) is still valid in more flex-

ible functional forms. My identification argument is similar to Graham and Hahn (2005),

who show that the endogenous peer effect acts like a group fixed effect when all nodes are

connected within a block. I extend this idea to cases where networks are not block-diagonal

by finding nodes with the same neighbors. Bramoullé et al. (2009) construct IV using ex-

ogenous characteristics of two-step away neighbors to identify the endogenous peer effect,

which is based on the assumption of exogenous networks. I relax this assumption, but only

identify the treatment effect instead of the endogenous peer effect. Griffith (2024) solves

the endogeneity of the network and identifies the endogenous peer effect by characterizing

the endogeneity as an omitted variable problem. He constructs a parametric model of net-

work formation and identifies the latent variables that affect both network formation and

outcome. I consider a more flexible functional form and remain agnostic about the network

formation process, but I only identify the treatment effect. In terms of modeling individ-

ual heterogeneity, Carrell et al. (2013), Masten (2018) and Griffith (2024) construct linear

models with random coefficients to model heterogeneity. In contrast, the heterogeneity in

this paper stems from the interaction between treatment, spillover, and observed character-

istics under flexible functional form. Other articles have considered identification through
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variance restrictions in the linear-in-means model (Graham (2008), Rose (2017)), and using

panel data structure (Manresa (2013), Miraldo et al. (2021)). Rose and Yu (2022) consider

misspecified peer groups. My approach imposes mean restrictions and uses cross-sectional

data.

The interference structure studied in this paper bears resemblance to the literature on

equilibrium treatment effect. Munro et al. (2025) and Munro (2025) study this problem in

centralized markets. In Munro et al. (2025), agents affect each other through the market

clearing price whereas the channel of spillover in my paper is the average neighbor outcome.

They study large markets and use mean-field approximation, while generating price varia-

tions through augmented experiments. This resembles a dense network where every agent

affects each other through the price. I do not directly restrict the density of the network.

However, when the network is dense, variations in the average neighbor outcome can be

limited and the treatment effect is only identified on a few values of the average neighbor

outcome. The setup in this paper is also related to Menzel (2025) who studies marginal

effects conditional on the treatment status of neighbors that are two or more steps away. In

contrast, treatment effect in my paper conditions on the average neighbor outcomes, which

is assumed to be a sufficient statistic for the treatment status of other connected individuals.

My work also contributes to the statistics literature on causal inference under interfer-

ence. While most of this literature assume spillover through treatment status, I analyze

the scenarios where spillover depends on outcome. The important distinction is that treat-

ments are typically exogenous, while outcomes are endogenous, which demands different

techniques to handle. Hudgens and Halloran (2008) construct average direct and indirect

effects in two-stage, hierarchical randomized experiments, and the inference results are pro-

vided by Tchetgen and VanderWeele (2012). Under greater generality, Manski (2013) and

Aronow and Samii (2017) capture the interference through an arbitrary known function of

the treatment vector, which is referred to as the exposure map (or effective treatment). The

function of treatment vector is typically motivated by counterfactual policies, for example,

the share of treated neighbors. This leads to natural definitions of direct (treatment) and

indirect (spillover) effects. Leung (2020) applies this idea to network problems and assumes

that the exposure map depends on the share of treated neighbors. Although the direct effect

is easy to define, the indirect effect often differs across contexts and is sensitive to assump-

tions. Hu et al. (2022) provides a form of the indirect effect that requires less assumptions

and is sensible under different kinds of interference pattern. Li and Wager (2022) build on

this and provide estimation and inference results using graphon. Wang et al. (2025) study

a similar problem in spatial contexts. Some recent studies relax the assumption of correct

specification of the exposure map (Sävje et al. (2021), Leung (2022), Sävje (2024)). My

work can be viewed as incorporating endogenous variables into the exposure map. To better
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capture endogeneity, sampling-based uncertainty is adopted in this paper to capture the

selection issue while design-based uncertainty is assumed by most of the literature.2

In terms of proof strategy, this paper is related to the work by Sasaki (2025) on the

consistency of GMM and M-estimators for finite-dimensional parameters in the context of

network ψ-dependence (Kojevnikov et al. (2021)). However, this paper focuses on infinite-

dimensional parameters but considers only a special type of M-estimator.

Finally, this paper relates to the strand of literature on information provision. Recent

studies have examined information provision in diverse domains including insurance (Cai

et al. (2015), Chemin (2018)), gun violence (Wood and Papachristos (2019)), corporate tax

visits (Boning et al. (2020)), new technology (Beaman et al. (2021)), property rights (Aberra

and Chemin (2025)), biased belief (Wagner et al. (2025)). I contribute to the literature

by providing a new methodology to study treatment effect under information provision.

Applying my method to the anti-violence campaign conducted by Paluck et al. (2016), I

provide evidence of the nonlinearity of the treatment effect of anti-violence campaign, which

is increasing in the average neighbor outcome.

3 Setup

3.1 Model

For any matrix B, Bij denote the (i, j)-th entry of B. For a random variableW , let supp(W )

denote its support. Bold-faced letters are used to denote vectors. For example, Y denote

the vector (Y1, · · · , Yn)′. Functions with vector-valued outputs are also denoted in bold face.

Assume that the researcher observes n agents represented as nodes in a network with

adjacency matrixA. Let Ã denote the row-normalized adjacency matrix. Let Yi ∈ supp(Y ) ⊆
R be the outcome of node i, Ti ∈ {0, 1} be the treatment status of node i. Also let Xi ∈
supp(X) ⊆ R

dX be the characteristics of node i and vi ∈ supp(v) ⊆ R
dv be the unobserved

shock received by node i. It is assumed that the researcher observes {Yi, Ti, Xi}ni=1 and the

adjacency matrix A. The focus of this paper is on experimental contexts and the treatment

T is assumed to be randomly assigned.

Example 3.1 Cai et al. (2015) provide information on a weather insurance product to

randomly-chosen farmers in rural Chinese villages. The information provision takes the

form of information sessions where staffs convey important details about the product includ-

ing price and coverage. A farmer i is treated (Ti = 1) if he/she attends the information

session. One outcome variable (Y ) of interest is the knowledge of farmers regarding the

2See Abadie et al. (2020) for the difference in sampling-based and design-based uncertainty.
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insurance product. This is measured by the share of correctly answered questions about the

product. Examples of individual characteristics (X) include education level, age, income,

past experience of drought. The network adjacency matrix A is measured by asking the farm-

ers to list their friends. A farmer i is connected to another farmer j (Aij = 1) if i lists j as

his/her friend.

To model the dependence on peer outcome, I consider the following nonlinear peer effect

model:
∀i : Yi = g(Di, Ti, Xi, vi)

Di :=
1

ni

n∑
j=1

AijYj ni :=
n∑

j=1

Aij

(1)

The knowledge of node i (Yi) is affected by the treatment status of i (Ti), the average

knowledge of the neighbors (Di), and the characteristics of i (Xi). However, Di is affected

by the knowledge of the neighbors’ neighbors. Therefore, the knowledge of node i affected by

every other node that can reach i. This captures knowledge transmission and its dependence

on the network structure. The model is a continuous analogue of the contagion model where

the transmission of actions occurs if the share of such action among neighbors exceeds a

certain threshold (Morris (2000), Centola and Macy (2007), Centola (2010)).

Example 3.2 Let Yi be a binary variable. Yi = 1 represents taking a certain action. The

contagion model can be written as Yi = 1{Di ≥ α
ni
} where ni =

∑
j Aij is the degree of node

i and Di =
1
ni

∑
j AijYj is the share of neighbors taking the action. α is contagion threshold

for the number of sources. α = 1 is the simple contagion model and α ≥ 2 captures complex

contagion. We could also allow for the threshold α to differ across individuals. For instance,

αi = p(Xi, Ti, vi) allows the threshold to depend on the characteristics, treatment status, and

unobserved shocks of that individual. A treatment that subsidizes the action would reduce the

threshold.

The contagion model is typically adopted in the literature to capture the spread of actions

in a network. A treatment that encourages some people to take the action could lead to a

spread of adoption. However, the outcomes are likely continuous when studying information

provision. As an example, Cai et al. (2015) measures the knowledge of farmers about

an insurance product by computing the share of correctly answered questions about the

product. The contagion model relates to the model in Equation 1 if we take g = g1 ◦ g2
where g1(y) = 1{y ≥ 0} and g2(d, t, x, v) = d − p(t, x, v) for some threshold function p().

The next example illustrates the interaction between the treatment and spillover.

Example 3.3 Consider g(Di, Ti, Xi, vi) = g̃(β1Di + β2Ti + X ′
iβ3) + vi. Assume that g̃ is

a strictly concave function and β1 > 0, β2 > 0. Being treated (Ti = 1) improves one’s
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knowledge. Having more knowledgeable neighbors (higher Di) diminishes this effect. The

specification adopted in Cai et al. (2015) assumes that g̃ is a linear function which implies

constant treatment effect.

The literature on exposure maps has largely assumed that the spillover depends on some

low-dimensional statistics on the treatment assignment. The following example compares

this modeling assumption to the one in Equation (1):

Example 3.4 Consider an alternative model

∀i : Yi = g(D∗
i , Ti, Xi, vi)

D∗
i :=

1

ni

n∑
j=1

AijTj ni :=
n∑

j=1

Aij

(2)

This equation replaces the average outcome (Di) in Equation (1) by the average treatment

status (D∗
i ). Equation (2) states that individual outcome depends only on the treatment status

of connected individuals. However, the peer effects model in Equation (1) allows individual

outcomes to depend on the treatment status of all other individuals when the network is

connected. The more important difference can be seen from a treatment assignment problem.

Assume that we are treating half of individual i’s neighbors. Equation (2) states that the

effect of treating individual i does not depend on the outcome of i’s neighbors. In the context

of Cai et al. (2015), this means that the understanding of individual i does not depend on

the understanding of i’s neighbors once the share of treated neighbors is fixed. However, the

knowledge spillover is more likely to depend on the understanding of the neighbors instead of

just their treatment statuses. In contrast, Equation (1) allows for the dependence on outcome,

and the effect of treating individual i still depends on the knowledge of i’s neighbors, even

after conditioning on the share of treated neighbors.

3.2 Causal Effects

Equation (1) naturally leads to the following causal objects:

τT (d, x) := Ev[g(d, 1, x, v)− g(d, 0, x, v)] (3)

τD(d, d
′; t, x) := Ev[g(d, t, x, v)− g(d′, t, x, v)] (4)

The first term τT (d, x) is the difference in counterfactual outcomes under different treat-

ment status, conditional on the observed characteristics and the average knowledge of the

neighbors. The causal effect τT can be viewed as evaluating the immediate impact of treat-

ment at a particular level of spillover, sharing similar intuition as the Average Partial Causal
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Ti Yi Yj

Yk

τT τD

τD

Figure 1: Causal Effects

Effect in Bugni et al. (2025). The causal effect in Bugni et al. (2025) is ‘immediate’ as it

does not account for adjustment of actions induced by the treatment. The effect τT is ‘im-

mediate’ as it does not account for the subsequent informational spillover between nodes. A

similar nonlinear treatment effect is considered in the shift-share design by Garzon and Pos-

sebom (2025) where the nonlinearity is with respect to the continuous treatment intensity.

The identification argument in this paper can also accommodate continuous treatment (Ti)

but the major focus is on the nonlinearity with respect to the spillover. The second term

τD(d, d
′; t, x) is the spillover effect. It measures the difference in expected outcome under dif-

ferent levels of average neighbor outcome. To better understand the causal effects, consider

assigning treatment to an individual i in network. The treatment leads to an immediate

increase in i’s knowledge measured by τT . Through communication, i spreads the knowledge

to the neighbors, which measured by τD. This is depicted in Figure 1.

The causal effects are useful for three reasons. First, the value of τT (d, x) at different val-

ues of d provides information on substitutability / complementarity between the information

obtained from neighbors and the treatment. If the τT (d, x) is decreasing in d, substitution

between the informational treatment and spillover is likely present. Second, the treatment

effect and the spillover effect together enables the measurement of the impact of a counterfac-

tual treatment assignment to another network, which is made precise in Example 3.5. Third,

under some particular network structure, τT (d, x) along determines the optimal treatment

assignment, which is illustrated in Proposition 3.1.

Example 3.3. (Continued) The causal effects take the following form:

τT (d, x) = g̃(β1d+ β2 + x′β3)− g̃(β1d+ x′β3)

τD(d, d
′; t, x) = g̃(β1d+ β2t+ x′β3)− g̃(β1d

′ + β2t+ x′β3)
(5)

When g̃ is a concave function and β1, β > 0, τT (d, x) is a decreasing function for any given

x. In this case, treatment and spillover are substitutes for knowledge acquisition. A sparse

assignment may be optimal when treating a fixed number of nodes. If instead g̃ is convex,

then the assignment should be clustered to utilize the complementarity.
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Example 3.5 Consider a network of n′ nodes and the row-normalized adjacency matrix Ā.

The vector of initial knowledge level is Y. Consider assigning a vector of treatment t. Let

Y∗ be the equilibrium knowledge after the treatment t. This example decomposes Y∗ −Y as

a sum of the causal effects τT , τD.

For simplicity, ignore the covariates x. Also, assume that g(d, t, v) = ḡ(d, t) + v. This

assumption is the key to identification which is later imposed in Assumption 4.1. Let ⊙
denote the point-wise multiplication. Define the following objects:

Y(0) := g(ĀY,0,v) = Y

Y(1) := g(ĀY, t,v)

Y(s) := g(ĀY(s−1), t,v) s ≥ 2

△(1) := Y(1) − Y(0) = g(ĀY, t,v)− g(ĀY,0,v) = ḡ(ĀY, t)− ḡ(ĀY,0) = τT (ĀY)⊙ t

△(s) := Y(s) −Y(s−1) = ḡ(ĀY(s−1), t)− ḡ(ĀY(s−2), t) = τD
(
ĀY(s−1), ĀY(s−2); t

)
s ≥ 2

(6)

As will be shown in the proof of Proposition 3.2, the contraction mapping theorem ensured

by Assumption 3.2 implies that:

Y∗ −Y =
∞∑
s=1

△(s) = τT (ĀY)⊙ t+
∞∑
s=2

τD
(
ĀY(s−1), ĀY(s−2); t

)
(7)

The term △(1) is the immediate change in knowledge induced by the treatment assignment

while △(s) for s ≥ 2 are the changes in knowledge due to the spillover effect. The above

process can be viewed as an infinite-step adjustment to the new equilibrium where s represents

the step. Initially, the treatment assignment induces an immediate impact △(1). In step 2

and onward, the knowledge level in the network keeps adjusting through the spillover effects.

More can be said regarding the optimal assignment under specific network structure

and sign restriction of the treatment effect (Assumption 3.3, 3.4 below). Formally, consider

the problem of assigning treatment to m < n′ individuals in the network with the goal

of maximizing the average outcome
∑n′

i=1 Yi. This can be viewed as a result of budget-

constrained maximization problem where treating each node is equally costly.

Proposition 3.1 Continue with the setup in Example 3.5. Assume that Assumption 3.2,

3.3, 3.4 hold. Further assume that the network Ā is fully connected: Āij = 1
n′ for any i, j.

For two treatment t1, t2, denote the result equilibrium knowledge Y∗
1,Y

∗
2. Then the following

holds: 1′Y∗
1 > 1′Y∗

2 if and only if τT (ĀY)′t1 > τT (ĀY)′t2.

This result suggests that the determination of optimal treatment assignment in a network

boils down to the comparison of τT when all agents are connected to each other within a
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block. This highlights the importance of τT .

3.3 Existence and Uniqueness of the Reduced Form

The data (X,T,v, A) is assumed to be drawn from an underlying distribution. Restrictions

will be placed on this underlying distribution when it comes to the identification part. The

goal of this current section is to establish the existence and uniqueness of the reduced form

equation. To proceed, I make the following assumptions:

Assumption 3.1 The true data generating process for the knowledge vector Y is:

∀i : Yi = g(Di, Ti, Xi, vi)

Di :=
1

ni

∑
j

AijYj ni :=
∑
j

Aij
(8)

where g : G → supp(Y ) is some measurable function and G is a polish space such that

supp(Y )× {0, 1} × supp(X)× supp(v) ⊆ G.

Assumption 3.2 There exists a constant κ ∈ (0, 1) such that ∂
∂D
g(Di, Ti, Xi, vi) ≤ κ < 1

for all realization of Di, Ti, Xi, vi

This assumption restricts the strength of knowledge spillover and prevents explosive be-

havior. In words, the assumption requires that if the average knowledge of node i’s neighbors

increases by a unit, the resulting increase in i’s knowledge is less than one unit. If the increase

is more than one, treating every node could lead to unbounded knowledge. This assump-

tion restricts the influence of distant nodes and is important to establish the ψ-dependence

condition for the consistency of the estimator. The following two examples illustrate this

assumption under the linear-in-means model and the model considered in Example 3.3.

Example 3.6 Assume that Yi = g(Di, Ti, Xi, vi) = β1Di + β2Ti +Xiβ3 + vi holds for all i.

The equation can thus be written in vector form: Y = β1D+ β2T+Xβ3 + v and D = ÃY.

The assumption that | ∂
∂D
g(Di, Ti, Xi, vi)| = |β1| < 1 implies that the matrix I−βÃ is diagonal

dominant, hence invertible. The unique reduced form is Y = (I − βÃ)−1(β2T +Xβ3 + v).

When |β1| > 1, the system becomes explosive.

Example 3.3. (Continued) The restriction that ∂
∂D
g(Di, Ti, Xi, vi) ≤ κ < 1 amounts to

|β1 d
dy
g̃(y)| ≤ κ < 1 for all values of y.

Assumption 3.1 states the data generating process for Y as a solution to a system of

equations and Assumption 3.2 implies that such solution exists and is unique, which is

formalized by point 1 of Proposition 3.2. The following assumptions add additional sign

restrictions on the structural model.
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Assumption 3.3 g(Di, 1, Xi, vi)− g(Di, 0, Xi, vi) ≥ 0 for all realizations of Di, Xi, vi

Assumption 3.4 For any value d > d′, g(d, Ti, Xi, vi)− g(d′, Ti, Xi, vi) takes the same sign

as g(Di, 1, Xi, vi)− g(Di, 0, Xi, vi) for all realizations of Ti, Xi, vi

Assumption 3.3 is a monotonicity assumption on the treatment effect in the knowledge

equation allowing for heterogeneous effects. Assumption 3.4 restricts the sign of the effect

of the average knowledge of the neighbors to be the same across different values, and the

same as the treatment effect. For example, if being treated increases knowledge, having

more knowledgeable peers should also increase knowledge. As a side note, the sign can

be negative in Assumption 3.3, 3.4, provided that they are the same. This assumption is

reasonable in the informational treatment context since communication between agents and

the information provision are unlikely to deprecate understanding.

Example 3.3. (Continued) Assumption 3.3 can be satisfied if g̃(.) is monotonic. Assump-

tion 3.4 can be satisfied if g̃(.) is monotonic and β1, β2 take the same sign.

The following proposition establishes the existence of a unique reduced form, which jus-

tifies Assumption 3.1 and is important for the subsequent analysis of the identification.

Proposition 3.2 Let g : supp(Y ) × {0, 1} × supp(X) × supp(v) → supp(Y ) be some un-

known measurable function as in Equation (8). Assume Assumption 3.2 holds. The following

statements are true:

1. The simultaneous equation system stated in Equation (8) admits a unique solution:

Y = r(T,X,v) where r : {0, 1}n × supp(X)n × supp(v)n → supp(Y )n is some measur-

able function.

2. Let ri be the i-th entry of r in the point above. If Assumption 3.3, 3.4 also hold,

Yi = ri(T,X,v) is non-decreasing in Tj for any j and strictly increasing for some j.

Furthermore, the above conclusions still hold if Di is replaced by
∑

iwiYi where wi is such

that wi ∈ [0, 1] and
∑

iwi = 1.

The above proposition suggests that the equilibrium knowledge Y can be expressed as a

function of {T,X,v}. The identification results in the subsequent section use this property

to separate restrictions on vi, vj from the restrictions on {Tk, Xk, vk}k ̸=i,j.

Remark 3.1 From the above proposition, it follows that the following system of knowledge
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equations also admits a unique reduced form:

∀i : Yi = g(D∗
i , Ti, Xi, vi)

D∗
i =

1∑
j Aijwi(Xj, Tj, vj)

∑
j

Aijwi(Xj, Tj, vj)Yj

wi(Xj, Tj, vj) ≥ 0

where wi(Xj, vj) represents the weight placed by i on neighbor j, which depends on both

observed and unobserved characteristics. This system of equations allows each agent i to

place different weights on the knowledge of different neighbors (Griffith (2024)).

4 Identification

The key challenge to identification is the correlation between Di and vi. Consider the

specification Yi = g̃(Di, Ti, Xi) + vi. The naive difference E[Yi|Di = d, Ti = 1, Xi =

x]−E[Yj|Dj = d, Tj = 0, Xj = x] does not identify τT (d, x) because the conditioning events

reflect E[vi|Di = d, Ti = 1, Xi = x] ̸= E[vj|Di = d, Tj = 0, Xi = x]. To see this, consider

the case depicted in Figure 2 with two pairs of links (i, k), (j, l) and i being the only treated

individual (colored in red). Assume that the outcome follows a linear-in-means model:

Yi = β0 + β1Di + β2Ti +Xiβ3 + vi (9)

Assume that the treatment and spillover effects are both positive (β1 > 0 and β2 > 0). The

naive difference estimator is comparing nodes i, j with Di = Dj, Xi = Xj, Ti ̸= Tj. However,

Di is an increasing function of Ti, vi, which implies that vi < vj. In words, an individual is

more knowledgeable if he/she is treated or has higher level of shocks. This then increases

the average neighbor knowledge Di through spillover. However, if i, j have the same average

neighbor knowledge but different treatment status, the shocks of i must be lower. This is

the problem of endogenous peer effects.

If the model is fully parametric as in Equation (9), and the network is exogenous, in-

strumental variable (IV) approach using the share of treated neighbors as the instrument

would suffice. Under flexible functional form, one may still use nonparametric IV (Newey

and Powell (2003)) or generalized IV (Chesher and Rosen (2017)) to relax the parametric

structure. However, when the network is endogenous, it is in general hard to find suitable

instruments. Endogeneity of the network is a valid concern because individuals with better

understanding may form links in different ways than their less knowledgeable peers.

This paper takes another route to address this problem. Under the additively separable

12
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structure, the essential condition needed is E[vi−vj|Di = Dj, Ti = 1, Tj = 0, Xi = Xj, E ] = 0

for some conditioning event E .3 Suppose that the event E is such that E[vi−vj|Di = Dj, Ti =

1, Tj = 0, Xi = Xj, E ] = E[vi − vj|s(vi, vj), Ti = 1, Tj = 0, Xi = Xj, E ] where s(vi, vj) is a

symmetric function. If in addition that vi, vj are i.i.d. conditional on {Ti = 1, Tj = 0, Xi =

Xj, E}, it is true that E[vi − vj|s(vi, vj), Ti = 1, Tj = 0, Xi = Xj, E ] = 0, which is proven

in Lemma B.3. The overall argument is that conditional on the event E , the endogenous

variablesDi, Dj depend on vi, vj only through a symmetric function s(vi, vj) = s(vj, vi). Since

vi, vj are conditionally i.i.d., their expectation remains the same after further conditioning

on a symmetric variable s(vi, vj).

The above analysis immediately highlights the relation between the method in this paper

and the control function approach (see Wooldridge (2015) for a review). The above argument

can be understood as follows: conditional on E , the symmetric quantity s(vi, vj) is a control

function for Di, Dj. However, this paper does not estimate this quantity, in contrast to the

control function approach (i.e. Newey et al. (1999)). This is because the control function

is a symmetric quantity, which suffices to establish the required equality in conditional

expectation. This is also a weaker result compared to the control function approach, which

typically establishes conditional exogeneity.

It remains to find the event E . Recall that Yk = g̃(Dk, Tk, Xk)+vk depends on vi through

Dk, and the dependence of Dk on vi happens through the quantity Akivi.
4 This implies that

Di, Dj depends on vi, vj through the vector {Akivi + Akjvj}k ̸=i,j. If Aki = Akj for all k, it

follows that Dk depends only on the quantity vi+ vj, which is a symmetric function of vi, vj.

One candidate for the event E is thus {Aki = Akj for all k}. This ensures thatDi, Dj depends

on vi, vj through a symmetric function s(vi, vj) = vi+ vj. The idea is illustrated in Figure 3.

The two individuals i, j are such that Aki = Akj, Ali = Alj. The above argument ensures that

3To see this, E[Yi − Yj |Di = Dj = d, Ti = 1, Tj = 0, Xi = Xj = x, E ] = g̃(d, 1, x) − g̃(d, 0, x) +
E[vi − vj |Di = Dj = d, Ti = 1, Tj = 0, Xi = Xj = x, E ].

4To see this, Dk =
∑

q ÃkqYq =
∑

q Ãkq[g(Dq, Tq, Xq) + vq].
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E[vi − vj|Di = Dj, Ti = 1, Tj = 0, Xi = Xj] = 0 and thus provides the identification result.

This intuition is formalized by Proposition 4.1 below under the following assumptions:

Assumption 4.1 For all i:

1. Yi = g(Di, Ti, Xi, vi) = ḡ(Di, Ti, Xi) + vi

2. vi ⊥ (T,X−i,v−i) conditional on Xi, {Aki}nk=1

3. vi ⊥ {Aql}l ̸=i conditional on Xi, {Aki}nk=1

4. vi, vj are identically distributed conditional on Xi = Xj, Aki = Akj for all k

Assumption 4.1 has three components. The first assumption on additive separability

restricts the degree of unobserved heterogeneity, excluding random coefficients on treatment

Ti. This paper focuses on the heterogeneity of the treatment effect across different levels of

average neighbor outcomes, rather than the heterogeneity of unobserved characteristics.

The second part is a conditional exogeneity assumption. The conditional exogeneity

of T allows the treatment assignment to depend on individual characteristics and network

structure but not unobserved shocks. The conditional exogeneity of {Aql}l ̸=i, which is the

adjacency matrix A without column i, is a bit subtle. Under undirected network, this as-

sumption says that vi is uncorrelated with the link structure of other individuals, conditional

on i’s link structure. This allows for Aql to depend on for example, Aqi, Ali, which represents

a taste for transitivity. However, under undirected networks, this assumption implies that

vi only affects Aki but not Aik. In words, vi only affects if others link to i but not whether i

link to others. The following example illustrates this possibility.

Example 4.1 An individual k obtains utility Uki = φ(vi, Xi, Xk) − c from linking with i.

The part φ(vi, Xi, Xk) represents the benefit of linking with i and is characterized by the

characteristics of i (both observed and unobserved). The term c is a cost of forming links.

The link A[ki] is formed according to a threshold-crossing rule Aki = 1{Uki ≥ ϵki} where ϵki

is a random shock. As a result, vi only affects Aki but not Aik.

The third part requires that the shocks be i.i.d. conditional on Xi = Xj, Aki = Akj for all

k. This allows the underlying network formation process to be driven by some unobserved

heterogeneity correlated with vi, provided that such heterogeneity is the same across nodes

sharing the same neighbors. This shares similarity with the model in Auerbach (2022).

However, notice that there is no restriction imposed on the level of the first moment of

vi (i.e. E[vi] = 0). This is because the identification argument relies on taking differences

(Yi−Yj) and is unaffected by the levels of E[vi] provided that it is common across individuals.
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Proposition 4.1 Let Assumption 3.2, 4.1 hold. Then the treatment effect τT (d, x), for

arbitrary (d, x) in the support, is identified by the following equation:

τT (d, x) = ḡ(d, 1, x)− ḡ(d, 0, x)

= E[Yi − Yj|Aki = Akj ∀k, Ti = 1, Tj = 0, Dj = Di = d,Xi = Xj = x]
(10)

The identification argument takes the form of a simple differencing argument. In undi-

rected networks, it is the difference in expected outcome between individuals of the same

neighbors and characteristics but different treatment status. One implication is that the

result can be extended to observational studies if the assumption of selection on observ-

ables holds. Essentially, the required condition is that among the individuals with the same

neighbors and characteristics, the treatment is as if randomly assigned.

The result shares similar intuition as Zeleneev (2020) and Auerbach (2022). Zeleneev

(2020) controls for unobserved heterogeneity by controlling for the residuals. In the model

studied by Auerbach (2022), individuals with the same link structure have the same unob-

served characteristics. Controlling for link structure solves the endogeneity problem created

by the unobserved characteristics. The conditioning event of Aki = Akj for all k also con-

nects to the identification results in Graham and Hahn (2005). They show that group

average outcome acts like a group fixed effect, which disappears when differencing within

group. In their setup, every individual is connected to every other individual in the group.

This implies Aki = Akj for all k if i, j belong to the same group. This identification idea is

also broadly related to the papers that control for unobserved heterogeneity using specific

network structures (Graham (2017), Gao (2020), Gao et al. (2023)).

The conditioning event Aki = Akj for all k if i, j may be justified by certain network

formation models. The most notable example is a special case of the stochastic block model

where P (Aij = 1) = p > 0 if i, j belongs to the same group and 0 otherwise. Assuming that

the group size is bounded, the conditioning event is observed more frequently as the number

of blocks tends to infinity, which is inherently the ‘many network asymptotics’. One caveat

is that this conditioning event has different implications depending on whether self-links are

allowed (i.e. Aii = 1). If self-links are ruled out, the event implies that i, j cannot be linked,

as in Figure 3.

The identification argument can be applied to both directed and undirected networks.

In undirected networks, Aki = Akj implies that Aik = Ajk, which leads to Di = Dj. Thus,

the above argument cannot identify the spillover effect g̃(d, t, x) − g̃(d′, t, x) in undirected

networks due to the lack of variation in D. In contrast, the argument can be applied directly

to identify the spillover effect in directed networks because Aki = Akj does not imply that

Aik = Ajk, leading to variation in Di −Dj. This is shown in Corollary 4.1.
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Corollary 4.1 Let Assumption 3.2, 4.1 hold. Then the spillover effect τD(d, d
′; t, x) under

directed networks, for arbitrary (d, d′, t, x) in the support, is identified by the following

equation:

τD(d, d
′; t, x) = ḡ(d, t, x)− ḡ(d′, t, x)

= E[Yi − Yj|Aki = Akj ∀k, Ti = 1, Tj = 0, Di = d,Dj = d′, Xi = Xj = x]
(11)

5 Estimation in Undirected Networks

This section constructs a nonparametric M-estimator of the treatment effect based on the

identification argument in Proposition 4.1, and establish its consistency. Proposition 4.1

shows that {τT (d, x)}(d,x) is identified through a set of moment restrictions.

E[Yi − Yj − τT (d, x)|Aki = Akj ∀k, Ti = 1, Tj = 0, Dj = Di = d,Xi = Xj = x] = 0 ∀(d, x)
(12)

Although this may be estimated by applying kernel-based methods, the number of obser-

vations satisfying Di = Dj = d can be small. For the observed characteristics X, random

sampling guarantees that there will be samples with X close enough. In contrast, D is an

equilibrium quantity with complicated dependence on {T,X,v} and the network structure

A. Random sampling may not be able to guarantee enough samples with D being close.

This relates to the problem of ‘thin sets’ in Khan and Tamer (2010) and can lead to slow

convergence.

5.1 Estimator

Since Equation (12) conditions on the realization ofDi, Xi, the result also holds by interacting

with a measurable function m(Di, Xi). For all values of (d, x):

E[(Yi − Yj − τT (d, x))m(d, x)|Aki = Akj ∀k, Ti = 1, Tj = 0, Dj = Di = d,Xi = Xj = x] = 0

(13)

Since the above holds for all values of d, x, integrating out (d, x) yields:

E[(Yi−Yj−τT (Di, Xi))m(Di, Xi)|Aki = Akj ∀k, Ti = 1, Tj = 0, Di = Dj, Xi = Xj] = 0 (14)

This leads to the following equivalent characterization of τT :
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Corollary 5.1 Under the assumptions of Proposition 4.1, the following holds:

τT (Di, Xi) = argmin
q∈Q

E

[
(Yi − Yj − q(Di, Xi))

2

∣∣∣∣Aki = Akj ∀k, Ti = 1, Tj = 0, Xi = Xj

]
(15)

where Q is the space of square-integrable functions.

To see the connection, the objective function in Equation (15) can be expanded as:

E

[
(Yi − Yj − q(Di, Xi))

2

∣∣∣∣Aki = Akj ∀k, Ti = 1, Tj = 0, Xi = Xj

]
= E

[
(τT (Di, Xi) + vi − vj − q(Di, Xi))

2

∣∣∣∣Aki = Akj ∀k, Ti = 1, Tj = 0, Xi = Xj

]
= E

[
(τT (Di, Xi)− q(Di, Xi))

2 + (vi − vj)
2

∣∣∣∣Aki = Akj ∀k, Ti = 1, Tj = 0, Xi = Xj

]
+ 2E

[
(τT (Di, Xi)− q(Di, Xi)) (vi − vj)

∣∣∣∣Aki = Akj ∀k, Ti = 1, Tj = 0, Xi = Xj

]
︸ ︷︷ ︸

= 0

(16)

where the cross-term vanishes due to Equation (14). Also, (vi − vj)
2 is independent of

the choice of q. If the space of function Q is approximated by a linear sieve space (i.e.

q(Di, X + i) =
∑R

r=1 γrbr(Di, Xi) for some basis functions {br}Rr=1), the coefficients γr can

be estimated directly through least squares, easing the computation.

This leads us to define the population objective function as

L(q) := E

[
(τT (Di, Xi)− q(Di, Xi))

2 + (vi − vj)
2

∣∣∣∣Aki = Akj ∀k, Ti = 1, Tj = 0, Xi = Xj

]
(17)

The relevant part for the minimization problem is (τT (Di, Xi)− q(Di, Xi))
2. The term

(vi − vj)
2 acts as a level-shifter that is independent of the choice of q(.). As a result, this

term can be omitted.

Let b denote the bandwidth and K1

( sij
b

)
be a kernel applied to the difference between

the i-th column and the j-th column of the adjacency matrix A. The term sij defines a

notion of distance between the i-th column and the j-th column of the adjacency matrix A.

This quantifies the deviation from the condition {Aki = Akj ∀k}. Detailed discussions of the

choice of sij and its implications are given in Subsection 5.2. Let K2 be a kernel applied to

17



the variable X. Define the weight ωij as follows:

ωij :=
K1

( sij
b

)
K2

(
Xi−Xj

b

)
1{Tj ̸= Ti}∑

j ̸=iK1

( sij
b

)
K2

(
Xi−Xj

b

)
1{Tj ̸= Ti}

(18)

Denote T := {i : Ti = 1,∃j s.t. ωij > 0}. The sample objective function can be defined as

follows:

Ln(q; b) =
1

|T |
∑
i∈T

∑
j ̸=i

[(Ti − Tj)(Yi − Yj)− |Ti − Tj|q(Di, Xi)]
2ωij (19)

The sample objective function Ln can be viewed as estimating the conditional expectation

E[[(Ti − Tj)(Yi − Yj) − |Ti − Tj|q(Di, Xi)]
2|Aj = Ai, Xj = Xi] using the Nadaraya-Watson

estimator. The exception is that we are only comparing nodes with different treatment

statuses to arrive at the treatment effect. The estimator of the causal effect is defined as

τ̂T (Di, Xi) := arg min
q∈Qk

Ln(q; b) (20)

whereQk is some sieve space. The goal of the rest of this section is to show that ∥τ̂T (Di, Xi)−
τT (Di, Xi)∥2

p−→ 0 as n→ ∞.

5.2 Kernel

The requirement that Aki = Akj for all k places heavy restriction on the data. To deal with

this, this subsection considers a kernel on the ℓ2-norm of the difference in columns of Ã. Let

ι(i) be a vector with 1 at the i-th position and 0 elsewhere. Define ι(j) in the same way. Let

sij be a function that depends on the difference between the i-th and the j-th column of A:

sij := s(A, i, j) := s̃(∥A(ι(i)− ι(j))∥2) (21)

The vector Ã(ι(i) − ι(j)) is the difference between the i-th and the j-th column of the

adjacency matrix A. It has non-zero entries only in places where Aki ̸= Akj, which happens

when node k is connected to only one of i, j but not both. It is immediate that Aki = Akj

for all k if and only if sij = 0 if s̃(a) ̸= 0 for any a ̸= 0. The identification argument in

Proposition 4.1 can be regarded as conditioning on sij = 0, which guarantees that Di, Dj

depends on vi, vj only through the symmetric function vi + vj. This then implies the key

identification result E[vi − vj|Ti, Tj, Xi = Xj, Di = Dj, sij = 0] = 0. However, when sij ̸= 0,

these results no longer hold and there is a bias from smoothing. Define the main version of
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Figure 4: Illustration of sij

sij as follows:

sij := s̃(∥A(ι(i)− ι(j))∥2) :=
1

min{ni, nj}
∥A(ι(i)− ι(j))∥2 (22)

where ni :=
∑

j Aij is the degree of node i. When Aij takes value in {0, 1}, the term sij can

be interpreted as the ratio of the number of different links between i and j to the minimum

degree of i, j. One immediate observation is that sij ≥ 2 if i and j share no link in common.

For concreteness, consider the example given in Figure 4. I only state the upper-triangular

part of the matrix sij since it is symmetric. In addition, the diagonal elements sii equal zero

by construction.

The following lemma quantifies the bias as a function of sij.

Lemma 5.1 Let Assumption 3.2, 4.1 hold. Further assume that maxk nk

mink nk
≤ C for some

constant C and that supAi,Xi
E[v2i |Ai, Xi] <∞. Then the following holds:

|E[ℓ(Di(T,X,v, A))(vi − vj)|Xi, Xj, Ti, Tj, sij]| ≤ C̃sij (23)

where C̃ is a constant independent of T,X,v, A and sij is defined as in Equation (22).

If assumption maxk nk

mink nk
≤ C for some constant C fails, the above conclusion still holds with

sij replaced by the following quantity:

sij := s̃(∥A(ι(i)− ι(j))∥2) :=
1

mink:nk>0 nk

∥A(ι(i)− ι(j))∥2 (24)

The appearance of sij may seem unnatural at first glance since none of Di, vi, vj explicitly

depends on sij. However, Di implicitly depends on sij through its dependence on the network

structure. The term E[l(Di)(vi − vj)] can be thought of as a measure of endogeneity. Recall

that the characterization in Equation (15) requires the cross-term to vanish. Lemma 5.1 can

be viewed as quantifying the magnitude of the cross-term when sij ̸= 0. The assumption of
maxk nk

mink nk
≤ C states that the number of links for each node is of the same order of magnitude.
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This is imposed by the literature on spatial autoregression (for example, Assumption 3 in Lee

(2002)) to restrict correlation across spatial units. This can be rationalized by a variant of the

link formation in Bickel and Chen (2009): Aij = 1{ρnh(ψi, ψj) ≥ ϵij} where ψi, ψj are i.i.d.

individual characteristics, ϵij are i.i.d. dyad-level shocks, and ρn is a deterministic sequence

that controls the sparsity of the network. For example, ρn = C leads to dense networks where

each node has degree of order O(n). If we impose h ≤ infa,b h(a, b) ≤ supa,b h(a, b) ≤ h̄, the

condition maxk nk

mink nk
≤ C is satisfied by C = 2 h̄

h
for large n.

To illustrate the intuition of the lemma, consider a unit change in vi (or vj), holding vi+vj

constant. When sij = 0, such a change does not affect Di because Di only depends on vi+vj.

When sij > 0, there are units linked to only one of i, j but not both, and their outcomes are

affected by this change, which then propagates in the network through spillover. This leads

to the correlation between Di and vi − vj, even after conditioning on vi + vj. Lemma 5.1

shows that this effect depends on two quantities: (1) the number of nodes that are linked

to only one of i, j, (2) the magnitude of immediate change in the outcome of these nodes

caused by a unit change in vi (or vj), holding vi+ vj constant. The first quantity is precisely

∥A(ι(i) − ι(j))∥2. For the second quantity, consider a node k that is linked to i but not j.

The immediate effect of a unit change in vi on the outcome of Yk = g(Dk, Tk, Xk)+vk can be

written as ∂
∂Dk

g(Dk, Tk, Xk)
∂Dk

∂vi
. The first quantity ∂

∂Dk
g(Dk, Tk, Xk) is bounded in absolute

value by κ by Assumption 3.2, and the second quantity ∂Dk

∂vi
equals 1

nk
by definition. The

effect thus depends on the degree of k. If k has many neighbors, a change in the outcome of

one of its neighbors does not affectDk by much and Yk will thus stay approximately the same.

However, the assumption maxk nk

mink nk
≤ C implies 1

nk
∥A(ι(i)−ι(j))∥2 ≤ C

ni
∥A(ι(i)−ι(j))∥2 := sij.

Therefore, the overall effect will be bounded by constant multiples of sij.

The following corollary proves a similar result based on the assumption of a bounded

matrix norm.

Corollary 5.2 Let Assumption 3.2, 4.1 hold. In addition, assume that the operator norm

of the adjacency matrix is bounded: ∥A∥ κ
mink nk

≤ κ̃ < 1 for some constant κ̃, where κ is the

bound imposed in Assumption 3.2. Finally, assume that supAi,Xi
E[v2i |Ai, Xi] <∞ Then the

following holds:

|E[ℓ(Di(T,X,v, A))(vi − vj)|Xi, Xj, Ti, Tj, sij]| ≤ C1sij + C2
√
sij (25)

where C1, C2 are constants independent of T,X,v, A and sij is defined as in Equation (22).

The difference from Lemma 5.1 is that we are now imposing assumptions on the norm

of the adjacency matrix. The assumption can be satisfied if the norm of the adjacency

matrix is bounded ∥A∥ = O(1) and the minimal degree mink nk diverges. For the bound
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on ∥A∥, it suffices to bound the largest eigenvalue when A is symmetric (i.e. undirected

network). This is similar to Assumption A2 in de Paula et al. (2024). The authors assume

that the maximum eigenvalue norm of ρ0A is strictly less than one so that (I − ρ0A)
−1 is

well-defined. Assumption 4.1 in Menzel (2025) also shares similar flavor. The core of this

type of assumption is to guarantee that the propagation of shocks is not explosive. The

bound on ∥A∥ can be equivalently viewed as restricting the degree of concentration in the

network, which is illustrated in the following two examples:

Example 5.1 (Star) Consider the case of a star network. With n = 4 nodes, the adjacency

matrix can be written as:

A =


0 1 1 1

1 0 0 0

1 0 0 0

1 0 0 0


where node 1 is the central node. Figure 5 includes the picture of the star network. Consider

a vector v with entries vi =
1√
n
for all i. ∥Av∥22 = (n−1)2

n
+ n−1

n
= n − 1. This shows that

∥A∥ ≥
√
n− 1.

Example 5.2 (Ring) Consider the case of a ring, where Aij = 1 if and only if j = i + 1

or if i = 1, j = n. For n = 4, the adjacency matrix can be written as:

A =


0 1 0 1

1 0 1 0

0 1 0 1

1 0 1 0


Figure 6 includes the picture of the ring network. For any vector v with ∥v∥2 = 1, it is

immediate that ∥Av∥22 =
∑n−2

i=1 (vi+ vi+2)
2+(v2+ vn)

2+(v1+ vn−1)
2 ≤ 4

∑n
i=1 v

2
i = 4. Thus,

∥A∥ is bounded.

5.3 Consistency

With the kernels defined, it remains to establish the consistency of the proposed estimator

in Equation (20), which relies on the following sets of assumptions.

Assumption 5.1 supd,t,x |g̃(d, t, x)| ≤ ȳ for some constant ȳ and supAi,Xi
E[|vi|4|Ai, Xi] <

∞
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The boundedness assumption is reasonable in the context of information provision. The

outcome variables tend to be measures related to knowledge and attitudes, which are usually

bounded.

Assumption 5.2 For any values of d, t, g̃(d, t, x) is a Lipschitz function with respect to x

with Lipschitz constant Lip(x).

The Lipschitz condition imposes smoothness restrictions on the function g(d, t, x), which

ensures that |g̃(d, t, x)− g̃(d, t, x′)| = o(1) as we restrict ∥x−x′∥2 = o(1) through the kernel.

Assumption 5.3

1. The kernels are bounded: ∥K1∥∞ <∞, ∥K2∥∞ <∞

2. The choice of bandwidth is such that b→ 0

Assumption 5.4 The conditional probability of receiving treatment is strictly bounded from

below and above: P (Ti = 1|Xi = x) ∈ [π, π̄] for all values of x.

For any two nodes i, j, let ℓ(i, j) be the distance of the shortest path between i, j (i.e.,

the smallest integer k such that Ak
ij > 0 and Al′

ij = 0 for all k′ < k). Define the following

quantities as in Kojevnikov et al. (2021):

N∂
n (i; s) := {j ∈ 1, · · · , n : ℓ(j, i) = s} (26)

δ∂n(s; k) :=
1

n

∑
i

|N∂
n (i; s)|k (27)

The first quantity N∂
n (i; s) is the collection of nodes that are s-step away from i. The

subscript n allows such set to vary with the sample size n. The second quantity δ∂n(s; k) is

the average of the k-th power of the number of neighbors that are s-step away. When k = 1,

this becomes the average number of neighbors that are s-step away which is a measure of
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concentration. If the nodes are within short distances from each other (high N∂
n (i; s) for

small s), the network is concentrated. When the network is overly concentrated, changes in

the outcome of a few nodes could have out-sized influence on the average outcome of the

whole network. The next assumption places a restriction on the level of concentration in the

network.

Assumption 5.5 1
n

∑
s≥1 δ

∂
n(s; 1)κ

s a.s.−−→ 0 where κ is the bound on the derivative | ∂
∂d
g(d, t, x)|

in Assumption 3.2.

Assumption 3.2 imposes a bound κ on the magnitude of the spillover effect, so the

interference decays at a geometric rate. This ensures that distant nodes have diminishing

influence. However, Assumption 3.2 does not place restrictions on the network structure and

distant nodes may not exist as in the star network. Assumption 5.5 fills this gap by requiring

that the network is not overly clustered. It is adapted from Kojevnikov et al. (2021) and is

a key condition for the law of large numbers.5 In words, this assumption requires that the

average number of neighbors at any distance be small relative to the number of nodes. The

examples below illustrate this assumption in two different networks.

Example 5.1. (Continued) Consider the case of a star network. For the central node

i, N∂
n (i; s) = n − 1 for s = 1 and 0 for s > 1. For the peripheral nodes, N∂

n (i; s) = 1 for

s = 1, n − 2 for s = 2, and 0 for s > 2. It follows that 1
n

∑
s≥1 δ

∂
n(s; 1)κ

s = 1
n
[2n−2

n
κ +

(n−1)(n−2)
n

κ2]
n→∞−−−→ κ2 ̸= 0.

Example 5.2. (Continued) Consider the case of a ring, where Aij = 1 if and only if

j = i + 1 or if i = 1, j = n. When n is an odd number, |N∂
n (i; s)| = 2 for all s. When n is

an even number, |N∂
n (i; s)| = 2 for all s < n

2
and |N∂

n (i; s)| = 1 for s = n
2
. Assume without

loss that n is an odd number. We have 1
n

∑
s≥1 δ

∂
n(s; 1)κ

s = 1
n

∑n−1
2

s=1 2κ
s ≤ 1

n
2

1−κ
= O( 1

n
).

The assumption fails under the star network where any two peripheral nodes are 2-step

away from each other, and any peripheral node is 1-step away from the central node. In

contrast, the ring network is more spread out and satisfies the assumption.

There is another angle to interpret this assumption. Rewrite 1
n

∑
s≥1 δ

∂
n(s; 1)κ

s as follows:

1

n

∑
s≥1

δ∂n(s; 1)κ
s =

1

n

∑
i

(
1

n

∑
s≥1

|N∂
n (i, 1)|κs

)
(28)

The term 1
n

∑
s≥1 |N∂

n (i, 1)|κs can be regarded as the upper bound on the effect of a change

in the outcome of node i on the average outcome in the entire network. The example below

5In Kojevnikov et al. (2021), this assumption is stated with κs replaced by θn,s, which bounds
the covariance between the outcome of nodes that are of distance s-away. In this paper, Lemma
B.1 shows that θn,s behaves like κs.
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illustrates this idea in the linear-in-means model. In this regard, 1
n

∑
s≥1 δ

∂
n(s; 1)κ

s is the

average influence of a change in the outcome of a single node on the average outcome of the

network. The law of large number requires that such effect shrinks to zero.

Example 5.3 Consider Yi = β1Di + β2Ti +Xiβ3 + vi with β2 = β3 = 0. The system admits

a unique reduced form when |β1| ≤ κ < 1: Y = (I − β1Ã)
−1v = (I +

∑∞
s=1 β

s
1Ã

s)v. Let

ι(i) be a vector with the i-th entry equal to 1 and all other entries equal to 0. A unit change

in vi on
1
n

∑n
k=1 Yk can be written as 1

n
1′(I − β1Ã)

−1ι(i). Let Ik, Ãk be the k-th row of I, Ã

respectively.∣∣∣∣ 1n1′(I − β1Ã)
−1ι(i)

∣∣∣∣ =
∣∣∣∣∣ 1n

n∑
k=1

(
Ik +

∞∑
s=1

βs
1Ã

s
k

)
ι(i)

∣∣∣∣∣
=

∣∣∣∣∣∣ 1n
n∑

l=1

∑
k∈N∂

n (i,l)

(
∞∑
s=l

βs
1Ã

s
k

)
ι(i) +

1

n

(
Ii +

∞∑
s=1

βs
1Ã

s
i

)
ι(i)

∣∣∣∣∣∣
≤
∣∣∣∣ 1n 1

1− β1

∣∣∣∣+ 1

n

n∑
l=1

∑
k∈N∂

n (i,l)

∣∣∣∣βl
1

1

1− β1

∣∣∣∣ (|Ãs
ji| ≤ 1)

=

∣∣∣∣ 1n 1

1− β1

∣∣∣∣+ 1

n

n∑
l=1

|N∂
n (i, l)|

∣∣∣∣βl
1

1

1− β1

∣∣∣∣
≤ 1

n

1

1− κ1
+

1

n

n∑
l=1

|N∂
n (i, l)|κl1

1

1− κ1

= O

(
1

n

n∑
l=1

|N∂
n (i, l)|κl1

)

The following assumption imposes regularity assumptions on the sieve space

Assumption 5.6

1. The sieve space Qk are compact under the L2-norm

2. Qk ⊆ Qk+1 ⊆ Q for all k.

3. There exists a sequence πkτT ∈ Qk such that ∥πkτT − τT∥2 → 0 as k → ∞

The zero covariance condition in Equation (14) is the theoretical underpinning for char-

acterizing τT (Di, Xi) as the unique minimizer of L2 distance. However, this condition relies

on sij = 0. The following two assumptions deals with the bias from smoothing by allowing

for sij ̸= 0. Assumption 5.7 approaches this problem from the ‘many network asymptotics’

where the network consists of blocks of bounded size and the number of blocks diverges with

the sample size. Assumption 5.8 adopts the ‘large network asymptotics’ where observations
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do not belong to separate blocks. The consistency result requires that one of these two

assumptions hold.

Assumption 5.7 1. The event {Ai = Aj} happens with positive probability that is bounded
from below: 0 < p ≤ P (Ai = Aj)

2. Ai has finite support

3. K2 = 0 for any ∥Xi −Xj∥2 ≥ C ′b for some constant C ′

4. The conditional density of vi|Ai, Xi is near identical for close x: For any ϵ, there exists

δ such that |fvi|Ai,Xi
(v|a, x)− fvj |Aj ,Xj

(v|a, x′)| < ϵ for any ∥x− x′∥ < δ.

5. The conditional density fvi|Ai,Xi
(v|a, x) is bounded from below: 0 < f ≤ infv,a,x fvi|Ai,Xi

(v|a, x)

This assumption is imposed to deal with the endogeneity of Di using the ‘many network

asymptotics’. In the empirical example, there are 28 treated schools. It is reasonable to

assume that the probability of two students from the same school have the same set of friends

as nonzero. For the second assumption, Ai takes a finite value within each school. For b small

enough, this implies that K1(
∥Ai−Aj∥

b
) = K1(0)1{Ai = Aj} for any K1 that is supported on a

bounded interval. As a result, there is no smoothing with respect to Ai−Aj asymptotically.

These two assumptions can also be satisfied when people form groups as in Chemin (2018)

and people are connected to all others in the same group. The event Ai = Aj is thus

equivalent to i, j belonging to the same group. For n large enough, K1 ̸= 0 only if i, j belong

to the same group. The third assumption also requires thatK2 have bounded support. It can

accommodate both discrete and continuous variables. The fourth and the fifth assumptions

are technical assumptions and can be replaced with the following alternative assumption:

For any ϵ, there exists δ such that |fvi|Ai,Xi
(v|a, x)− fvj |Aj ,Xj

(v|a, x′)| < ϵfvi|Ai,Xi
(v|a, x) for

any ∥x − x′∥ < δ. As shown in Proposition 4.1, E[vi − vj|Ai = Aj, Xi = Xj, Di] = 0. The

fourth and fifth assumptions ensure that this difference in conditional expectation is small

when the condition {Xi = Xj} is relaxed. Overall, Assumption 5.7 requires that Ai = Aj

holds strictly asymptotically (no smoothing with respect to Ai − Aj asymptotically) but

allows for ∥Xi − Xj∥2 to deviate from zero. To approach the finite sample bias, one may

need to refer to Lemma 5.1 or Corollary 5.2.

Assumption 5.8

1. For any Lipschitz function l(.), the following holds: |E[l(Di)(vi− vj)|Ai, Aj, Xi, Xj]| ≤
tl(sij) where tl is some continuous function with tl(0) = 0

2. K1 has bounded support on [0, C]
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3. |T | → ∞ as n→ ∞

Under the ‘single large network asymptotics’, it may not be feasible to assume that the

event Aki = Akj ∀k happens with strictly positive probability. This assumption deals with

the bias from relaxing this constraint. For point 1 to hold, we could apply Lemma 5.1 or

Corollary 5.2. If all nodes have degrees of similar order of magnitude, Lemma 5.1 can be

applied. If assumptions on the norm of the adjacency matrix A can be imposed, Corollary

5.2 can be adopted.

The second and third points may seem non-standard at first glance. In textbook nonpara-

metric analysis, symmetric kernel is usually adopted to eliminate the bias from smoothing.

However, the support of Ai (or Ãi) is a subset of the space of sequences which is of infinite

dimension. This is also referred to as functional data. Unlike finite-dimensional problems,

applying product kernels may lead to significant under-smoothing, or even no sample being

used. The literature studying the Nadaraya-Watson estimator under functional data thus

constructs kernels on the difference in norms (Ferraty et al. (2010), Hong and Linton (2016)).

The final assumption requires that the effective sample size tends to infinity. It can be

related to the assumption of nbd → ∞ when smoothing with respect to a d-dimensional

variable. This assumption imposes an upper bound on the speed at which b tends to zero

and ensures that the effective sample size tends to infinity. It also restricts the sequence of

networks. This is illustrated in the following three examples. For the first example, assume

that the network is undirected and all network links are i.i.d. Bernoulli random variables

with probability p. For large n, each individual has degree near np and the number of

different links for two arbitrary individuals is near 2np(1− p). It is expect that sij ≈ 2(1−p)
p

.

Unless p → 1, it is unlikely that |T | → ∞. For the second example, assume that there are

G groups. Each individual joins Gi groups where Gi is a random variable and Aij = 1 if i, j

share at least one group in common. This resembles the informal groups in Chemin (2018).

Under this setup, we have positive probability of observing two individuals with the same

neighbors and |T | → ∞ holds trivially. The third example is a network formation process

based on homophily. Each individual draws ξi ∈ [0, 1] and Aij = 1{|ξi−ξj| ≤ ϵ}. For n large

enough, pairs with ξi ≈ ξj are observed, which leads to sij ≈ 0, are observed. In general, the

required condition is more likely to hold when the network is generated by some underlying

low-dimensional variables.

The following theorem establishes the consistency of the proposed estimator.

Theorem 1 Assume that Assumption 3.2, 4.1, 5.1 - 5.6 hold. Further assume that As-

sumption 5.7 or Assumption 5.8 holds. Then

∥τT (Di, Xi)− τ̂T (Di, Xi)∥2
p−→ 0
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where τ̂n(Di, Xi) is defined in Equation (20).

6 Simulation

This section presents simulation evidence on the performance of the proposed estimator.

The outcome is generated according to the following equation:

Yi = 0.5 + 0.3Ti + 0.4Di + 0.2TiDi + vi (29)

which leads to the following causal effect:

τT (Di, Xi) = 0.3 + 0.2Di (30)

The error term vi follows a standard normal distribution and the treatment assignment Ti are

i.i.d. Bernoulli random variable with P (Ti = 1) = 0.3. This section studies the performance

of the estimator under both the ‘many network’ asymptotics and the ‘single large network’

asymptotics. For the ‘many network’ asymptotics, the network is generated as a block-

diagonal matrix where each block represents a school as in the empirical application. Each

block consists of n = 500 nodes. Within each block, the links are generated from one of the

following data-generating processes (DGP):

1. Network DGP 1: There are 12 groups and each individual joins a random number Gi

of groups. The number of groups Gi follows the following distribution: min{12, 1+G̃i}
where G̃i is a Poisson random variable with parameter λ = 3.

2. Network DGP 2: Each individual obtains an i.i.d. draw from the uniform distribu-

tion on [0, 1], denoted as ξi. The undirected network is generated from a variant of

the model in Auerbach (2022): Aij = 1{ρn
√

|ξi − ξj| − ν(ξi + ξj) ≥ (1 − 2ν)ηij. The

parameter ρn is set at 60 logn
n

and ν is set at ν = 0.3. The dyad-level shocks ηij are

i.i.d. Uniform [0, 1] variables.

3. Network DGP 3: Each individual randomly joins one of the 50 groups. Let Ci ∈
{1, 2, · · · , 50} denote the group that i joins. The network is formed by Aij = 1{Ci =

Cj}, i.e. all individuals within a group are linked to each other.

The summary statistics on degree, Y , D, and link differences (sij) for Network DGP 1, 2, 3

are contained in Table 1, 2, 3 respectively. Network DGP 1 can be considered as the baseline

DGP while DGP 2 and 3 add additional challenges. As shown in Table 2, the minimum link

difference is bounded away from zero, which challenges the identification argument. This
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adds bias to the estimator due to endogeneity. DGP 3 guarantees observations with the

same neighbors but the number of such observations is limited. In addition, under DGP 3,

two nodes have either sij = 0 (same link structure) or sij > 1. This implies that any choice

of bandwidth with 0 < b ≤ 1 yields the same result. This can be viewed as adding challenges

through a higher variance. Since the identification argument in Proposition 4.1 hinges on

sij = 0, one would expect that the bias of the estimator in Network DGP 3 is less than that

under Network DGP 2. However, recall that the endogeneity in estimation stems from the

covariance of a function of Di and vi − vj, which is illustrated in Equation (16). When Di

exhibits limited variation, this covariance term may also be small due to the Cauchy-Schwarz

inequality. This is analogous to the consistency result in Lee (2002). As the network under

DGP 2 is denser compared to DGP 3, this bias need not be much larger than in DGP 3.

For the ‘single large network’ asymptotics, the network is generated according to the

following process:

1. Network DGP 4: This is a variant of the Network DGP 1. There are 10 groups and

each individual joins a random number Gi of groups. The number of group Gi follows

the following distribution: min{10, 1+G̃i} where G̃i follows a Poisson distribution with

parameter λ = 1.

The summary statistics are contained in Table 4. As the number of nodes expands, there

will be more nodes with similar share of neighbors. This can be seen from Table 4 where

the minimum Link difference decreases with the sample size.

For each simulated dataset, the estimation problem is:

max
q∈Q

Ln(q; b) =
1

|T |
∑
i∈T

∑
j ̸=i,Cij=1

[(Ti − Tj)(Yi − Yj)− |Ti − Tj|q(Di)]
2ωij (31)

The treatment effect τT is approximated by a linear combination of basis functions q(Di) =∑R
r=1 γrBr(Di) where {γr}Rr=1 is the set of coefficients to be estimated using weighted least

squares. The estimated treatment effect τ̂T is equal to

τ̂T (Di) =
R∑

r=1

γ̂rBr(Di) (32)

where the coefficients γ̂ are estimated as follows:

γ̂ = (q′Ωq)−1q′Ωy

q := (|Ti − Tj|q(Di))i,j

y := ((Ti − Tj)(Yi − Yj))i,j
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where Ω is the diagonal matrix with diagonal entries ωij. The basis functions are Bernstein

polynomials. The probability density function of the truncated normal distribution on [0, 1]

is adopted as the kernel K1:

K1

(x
b

)
=

1

b

ϕ
(
x
b

)
Φ
(
1
b

)
− Φ (0)

where ϕ,Φ are the probability density function and the cumulative density function of the

standard normal distribution, respectively.

The L2 loss is used to evaluate the performance of the estimator. It is calculated as

follows:

ℓ̂([d1, dM ]) :=
1

M

M∑
m=1

(τ̂T (dm)− τT (dm))
2 (33)

where {dm}Mm=1 is a set of grid on the interval [d1, dM ]. The baseline interval [d1, dM ] is

chosen to be the minimum and maximum of D. For example, [d1, dM ] = [0.1, 0.85] with

grid size 0.001 for Network DGP 2. For Network DGP 3, the original interval is [−0.2, 2]

with grid size 0.002. Since the basis functions may behave poorly near the boundary due

to limited number of observations, the L2 loss is also computed on truncated intervals. For

example, the L2 loss is computed on the truncated interval [0.15, 0.8] for Network DGP 2.

For Network DGP 1-3, I vary (1) the number of schools, (2)the bandwidth, and (3) the

degree of the basis function. One exception is that the bandwidth is fixed for Network DGP

2. This is because any bandwidth 0 < b ≤ 1 yields the same result as mentioned above.

For Network DGP 4, the number of nodes is set to different values instead of the number of

schools. The number of simulation repetitions is set to 2000, and the L2-loss results under

Network DGP 1-4 are contained in Appendix A Table 8-11 respectively. For illustrative

purposes, I plot the results under Network DGP 1 in Figure 6. The figures for Network

DGP 2-4 contain qualitatively similar results and are collected in Appendix A as Figures 10

- 12.

The mean squared error under Network DGP 1 is plotted in Figure 6, where the horizontal

axis is the number of schools. Start with the graph on the left where the mean squared

error is calculated on the full support of Di ([0.2, 1.05]). The plotted lines contain results

under different configurations of bandwidths and degrees. The difference in bandwidth is

characterized by points of different shapes and the difference in degrees is represented by

different colors. Immediate from the graph is that the mean squared error decreases with

the number of schools, which coincides with the consistency result in Theorem 1. Next, an

overly-low bandwidth may lead to a higher mean squared error as it reduces the effective

sample size. This can be seen by comparing lines of the same color, where the circles (b = 0.2)
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have higher error compared to triangles (b = 0.5) and squares (b = 1). Similarly, including

too many basis functions may lead to a higher mean squared error as it fits more noise. This

can be seen by comparing lines of different colors, where the ones colored in blue have higher

mean square error. The graph on the right plots the mean squared error calculated on a

smaller interval [0.3, 0.95]. This is because the number of observations near the boundary of

the support is sparse and can lead to imprecise estimates. Indeed, the error is halved as can

be seen from the scale of the y-axis. The difference in bandwidth and degrees now produce

less difference as well. Finally, the L2 loss under Network DGP 2 and 3 are comparable

except when the degree equals 8 as seen in Figure 10 and 11. This confirms the intuition

that the endogeneity problem may be less of a concern when Di exhibits limited variation.

Figure 7: Sample Mean Squared Error under Network DGP 1

Notes: This figure plots the simulation results under Network DGP 1. The horizontal axis is the

number of schools and the vertical axis is the sample mean squared error as defined in Equation

(33). Each school contains 500 observations. The graph on the left calculates the the mean

squared error on the full support while the graph on the right truncates the support on both ends to

avoid boundary issues. The set of bandwidth is {0.2, 0.5, 1} while the set of degree is {3, 5, 8}. The

results under different bandwidth are plotted as points of different shapes. Difference in degree is

represented by different colors.
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#School
Degree Y D Link Difference

mean min max mean min max mean min max mean min max
5 376 142 498 0.91 -2.64 4.51 0.70 0.23 1.00 0.58 0 2.50
10 376 140 499 0.91 -2.82 4.69 0.70 0.22 1.03 0.58 0 2.57
15 376 138 499 0.91 -2.94 4.79 0.70 0.22 1.04 0.58 0 2.61
20 376 137 499 0.91 -3.02 4.86 0.70 0.21 1.05 0.58 0 2.63

Table 1: Summary Statistic under Network DGP 1

#School
Degree Y D Link Difference

mean min max mean min max mean min max mean min max
5 181 85 432 0.74 -2.81 4.29 0.33 0.13 0.80 1.52 0.18 4.96
10 181 83 435 0.74 -2.98 4.48 0.33 0.12 0.83 1.52 0.17 5.13
15 181 82 436 0.74 -3.09 4.60 0.33 0.12 0.84 1.52 0.17 5.22
20 181 81 437 0.74 -3.16 4.67 0.33 0.11 0.85 1.52 0.16 5.28

Table 2: Summary Statistic under Network DGP 2

#School
Degree Y D Link Difference

mean min max mean min max mean min max mean min max
5 11 3 20 0.84 -2.86 4.65 0.54 -0.23 1.84 2.41 0 9.18
10 11 2 21 0.84 -3.05 4.84 0.54 -0.29 1.97 2.41 0 11.11
15 11 2 21 0.84 -3.15 4.97 0.54 -0.32 2.06 2.41 0 12.44
20 11 2 22 0.84 -3.24 5.05 0.54 -0.34 2.11 2.41 0 13.09

Table 3: Summary Statistic under Network DGP 3

n
Degree Y D Link Difference

mean min max mean min max mean min max mean min max
500 176 85 405 0.74 -2.33 3.83 0.34 0.14 0.76 1.69 0.007 4.33
1000 353 179 836 0.74 -2.55 4.04 0.32 0.15 0.75 1.68 0.003 4.19
1500 530 275 1271 0.74 -2.67 4.15 0.32 0.15 0.75 1.68 0.002 4.14
2500 884 468 2154 0.73 -2.81 4.29 0.31 0.16 0.74 1.67 0.001 4.09

Table 4: Summary Statistic under Network DGP 4

7 Empirical Application

The empirical application is based on the network experiment conducted by Paluck et al.

(2016). The authors study the impact of an anti-conflict intervention on social norms among

adolescents in schools. There are 56 public middle schools that participated in the study.

Half of these schools are randomly selected to receive an anti-conflict intervention. Within

each treated school, a subset of students is designated as the seed group based on their

covariates. Half of the students in the seed group are selected to participate in the interven-

tion by block randomization. The treated students participate in bi-monthly meetings with
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trained research assistants. During training sessions, research assistants help students iden-

tify common conflict behaviors in their schools and encourage them to oppose such conflicts

in public. The authors perform two waves of surveys. The first wave of survey is conducted

before the intervention and the second wave occurs after the treatment. In each survey,

students are asked to answer questions related to social norms and their own attitudes. I

work with the 28 treated schools with 10,056 students in total.

Within each school, the network is measured by asking students to list up to ten students

at their school whom they chose to spend time with in the past few weeks. The resulted

network is directed. In the empirical application, I work with the undirected network which

assumes that i, j is linked if Aij = 1 or Aji = 1.

Past studies adopt the indicator variable for wearing an orange wristband as the outcome

variable (Paluck et al. (2016), Aronow and Samii (2017), Leung (2020)). The wristband

is disseminated as a reward to those students engaging in conflict-mitigating behaviors.

Since the current paper focus on continuous outcome variables, an index for anti-conflict

attitude is adopted as the outcome variable. The index is constructed based on all the 33

variables in the section ‘Respondent Attitudes’ contained in the Wave II survey. These are

binary questions that measure individual attitude towards conflicts in the school. As an

example, the variable ‘CSCAW2’ contains the binary response towards the question ‘If we

want, students can change the amount of conflict at our school’. However, higher value of

the binary variable does not necessarily correspond to a more positive attitude. For instance,

the variable ‘CILW2’ contains the binary response to the question ‘I have had a lot of conflict

with other students at this school’ and a higher value indicates a more negative attitude.6 To

this end, I redefine the binary variables such that a higher value represents a more positive

attitude. In the case of the variable ‘CILW2’, this is done by working with the variable ‘1

- CILW2’ instead of ‘CILW2’. After this transformation, the index is created as an average

across the binary responses. The summary statistics are listed in Table 5. Samples with

responses outside {0, 1} are excluded, leaving 5,802 individuals in the sample.

Some variables in the ‘Respondent Attitudes’ section do not directly reflect the attitude

of the respondent. For example, the variable ‘CBIW2’ collects the response to the question

‘Boys at this school are involved in a lot of conflict’. As a robustness check, I include only

the set of variables that directly reflects the respondent attitude. The outcome variable is

then constructed based on the following eight survey questions in the second wave:

1. If we want, students can change the amount of conflict at our school

2. I’d like to help change the amount of conflict at our school with a group of other

students

6There are 17 such variables.
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3. I think teachers and the bullying (harassment, intimidation & bullying: HIB) rules of

this school help solve student conflicts

4. I can help change the way students at this school act around each other

5. I feel like I belong at this school

6. I have had a lot of conflict with other students at this school

7. Sometimes you have to be mean to others as a way to survive at this school

8. I’ve stayed home from school because of problems with other students

All questions are binary and the answers are either 0 (no) or 1 (yes). Answering 1 (yes)

reflects a positive attitude for questions 1-5 and a negative attitude for 6-8. As argued

above, the roles of 1 and 0 are reversed for question 6-8 and construct the index Y as the

average answer for question 1-8. The summary statistics for this alternative construction of

the index are listed in Table 12 in Appendix A. Samples with responses outside {0, 1} are

excluded, leaving 10,056 individuals in the sample.

Variable Mean Standard Deviation Min Max Sample Size
Yi 0.679 0.137 0.182 1 4,756
Di 0.681 0.071 0.242 0.939 4,694
Ti 0.064 0.245 0 1 4,756

ni (Degree) 6.135 2.998 1 21 4,694

Notes: This table contains the summary statistics for the index constructed based on the

questions in the section ‘Respondent Attitudes’ contained in the Wave II survey. The variable Yi
is constructed based on all questions in the section. Each sample is an individual. Samples are

excluded if (1) answer does not fall in {0, 1} for the binary questions, (2) contain missing values

for any variables listed in the table.

Table 5: Summary Statistics

Mean Standard Deviation Min Max First Quartile Third Quartile Sample Size
3.062 1.532 0 21 2.200 3.333 51,757

Notes: This table contains the summary statistics for the maximum share of different links sij as

defined in Equation 22. Each observations is a pair of individuals in the same school.

Table 6: Summary Statistics of sij

Start with the baseline estimation without covariates. Let Cij be an indicator variable

that equals one if individuals i, j are in the same school. Only within-school comparisons are
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made since the survey collects the links within schools. As stated in the simulation section,

the estimation problem is:

max
q∈Q

Ln(q; b) =
1

|T |
∑
i∈T

∑
j ̸=i,Cij=1

[(Ti − Tj)(Yi − Yj)− |Ti − Tj|q(Di)]
2ωij (34)

The treatment effect τT is approximated by a linear combination of basis functions q(Di) =∑R
r=1 γrBr(Di) where {γr}Rr=1 is the set of coefficients. The estimated treatment effect τ̂T is

equal to

τ̂T (Di) =
R∑

r=1

γ̂rBr(Di) (35)

The coefficients γ̂ are estimated through weighted least squares and the basis functions are

Bernstein polynomials. The probability density function of the truncated normal distribution

on [0, 1] is adopted as the kernel K1:

K1

(x
b

)
=

1

b

ϕ
(
x
b

)
Φ
(
1
b

)
− Φ (0)

where ϕ,Φ are the probability density function and the cumulative density function of the

standard normal distribution, respectively.

I consider three values for the bandwidth b ∈ {0.2, 0.5, 1} and three values for the number

of basis functions R ∈ {3, 5, 8}. To avoid problems at the boundary, I truncate the range

of the plot on both sides, and the plot for b = 1, R = 3 is shown in Figure 8. The blue

lines are point-wise 95% confidence intervals obtained from bootstrapping the schools. The

full results are shown in Figure 13. The results for the alternative definition of the outcome

variable are included in Figure 14.

Due to the limited sample size, I also consider a partial linear model to incorporate

control variables:

Yi = ḡ(Di, Ti, Xi) + vi = ǧ(Di, Ti) +X ′
iβ + vi (36)

The control variables X include gender, indicators for (1) white, (2) mother went to college,

(3) live with both parents, (4) have older siblings, (5) hang out with boys and girls at school.

The summary statistics of the control variables are included in Table 7. This is estimated by

approximating ǧ with smoothing splines (Section 5.4 in Hastie et al. (2009)). The estimation
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problem is as follows:

min
γ,β

1

|T̃ |

∑
i∈T̃

∑
j

(
Yi − Yj −

R∑
r=1

γrBr(Di)− (Xi −Xj)β

)2

ω̃ij + λ1

(∑
r

γ2r

)
+ λ2

(∑
k

β2
k

)

ω̃ij :=
K1(

sij
b
)1{Ti ̸= Tj}∑

j K1(
sij
b
)1{Ti ̸= Tj}

T̃ :=

{
i ∈ {1, · · · , n}

∣∣∣∣∑
j

K1(
sij
b
)1{Ti ̸= Tj} > 0

}
(37)

The basis function Br are natural cubic splines with knots at each unique value of the data

point Di, and are defined as in Equation (5.4), (5.5) in Hastie et al. (2009). The number

of basis functions R is equal to the number of distinct values of Di observed in the sample.

The penalty parameters λ1, λ2 are chosen by five-fold (leave-one-out) cross validation, with

the following criteria function:

CV (λ) :=
1

|T̃ |

∑
i∈T̃

∑
j

(
Yi − Yj −

R∑
r=1

γ̌r(λ; i, j)Br(Di)− (Xi −Xj)β̌(λ; i, j)

)2

ω̃ij (38)

where γ̌r(λ; i, j) and β̌(λ; i, j) are estimated using observations from clusters different from

i, j. The result is shown in Figure 9.

Variable Mean Standard Deviation Sample Size
Male 0.554 0.497 4,756
White 0.641 0.480 4,756

Mother Went to College 0.720 0.449 4,756
Live with Both Parents 0.736 0.441 4,756
Have Older Siblings 0.627 0.484 4,756

Hang out with Boys and Girls 0.712 0.453 4,756

Notes: This table contains the summary statistics for the binary control variables. The variable

Yi is constructed based on all questions in the section. Each sample is an individual. Samples are

excluded if (1) answer does not fall in {0, 1} for the binary questions, (2) contain missing values

for any variables listed in the Table 5.

Table 7: Summary Statistics for Control Variables

Overall, the results suggest considerable non-linearity in the treatment effect. The treat-

ment effect is higher for students whose friends have more positive attitudes, suggesting the

presence of complementarity. Students benefit from treatment directly, but this can be en-

hanced by discussing the information with their peers. When the peers have more positive
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attitude, the benefit from discussing with peers also increases. If the policy maker intends

to carry this treatment to another network (school), he/she may target the individuals with

more optimistic friends. This again highlights the advantage of the method proposed in this

paper which explicitly shows the relationship between treatment and spillover.

Figure 8: Estimated Treatment Effect under b = 1

Notes: This plot shows the estimated τT (Di) at different values of Di in [0.55, 0.8] under the

bandwidth choice b = 1. The outcome variable is the index constructed using all the questions in

the section ‘Respondent Attitudes’ contained in the Wave II survey. The x-axis is Di and the

y-axis is τT . The blue lines are point-wise 95% confidence intervals obtained from bootstrapping

the schools. The basis function is Berstein polynomials of degree 3.

8 Conclusion

This paper studies the treatment effect under the presence of endogenous peer influence in

networks. A nonlinear peer effect model is constructed, based on which the causal effects are

defined. Identification of the treatment effect is obtained by comparing nodes with different

treatment status but the same link structure. The identification argument can be extended
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to observational studies under the assumption of selection on observables. Although the

identification argument places considerable restrictions on the data, I develop a kernel on

the maximum share of different links which enables smoothing in finite samples. Consis-

tency of the estimator is established, and the estimator is applied to the empirical example,

illustrating the presence of nonlinearity of the anti-conflict intervention. The method in this

paper also applies to other contexts. For example, the importance of endogenous peer effects

is highlighted in other contexts including adolescent smoking (Nakajima (2007)), academic

performance (Calvó-Armengol et al. (2009)). The treatment effect of policy interventions

likely depends on the average neighbor outcomes. For example, consider the information

sessions on the adverse impact of smoking. The effect of these sessions may be attenuated

when peers are intense smokers: they may simply discourage the treated individual.

The proposed method has three advantages. First, it does not rely on parametric as-

sumptions and exogeneity of the network. The latter is a typical assumption for construct-

ing instrumental variables. Second, the method does not restrict the distance of spillover.

Third, the method works under some types of cross-cluster interference. For example, peo-

ple in a village choose to join a subset of groups. Chemin (2018) faces this challenge and

states the result as a lower bound since the control groups are affected by such cross-cluster

interference.

The paper also faces two major limitations. First, the functional form assumption of

additively separable errors is hard to accommodate discrete outcomes. Second, the iden-

tification argument of the same set of neighbors places strong restriction on the data. It

may fail in scenarios where networks are formed with limited level of dependence. This is

because the number of ways to form links (2n) is larger than the sample size (n). The kernel

proposed in this paper relaxes this restriction in finite samples but one still needs to take a

stance on how the network is formed.
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Figure 9: Estimated Treatment Effect under Partial Linear Model

Notes: This plot shows τT (Di) at different values of Di in [0.55, 0.8] under the bandwidth choice

b = 1. The outcome variable is the index constructed using all the questions in the section

‘Respondent Attitudes’ contained in the Wave II survey. The specification for the outcome

variable is a partial linear model as in Equation (36) and the control variables include gender,

indicators for (1) white, (2) mother went to college, (3) live with both parents, (4) have older

siblings, (5) hang out with boys and girls at school. The basis functions are natural cubic splines

with knots being all unique values of Di in the sample. The coefficients are estimated by

generalized ridge regression where the penalty term is chosen from five-fold (leave-one-out)

cross-validation. The x-axis is Di and the y-axis is τ̂T . The purple area are point-wise 95%

confidence intervals obtained from bootstrapping the schools.
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A Tables and Figures

Figure 10: Sample Mean Squared Error under Network DGP 2

Notes: This figure plots the simulation results under Network DGP 2. The horizontal axis is the

number of schools and the vertical axis is the sample mean squared error as defined in Equation

(33). Each school contains 500 observations. The graph on the left calculates the the mean

squared error on the full support while the graph on the right truncates the support on both ends to

avoid boundary issues. The set of bandwidth is {0.2, 0.5, 1} while the set of degree is {3, 5}. The

case with degree equal to eight gives extreme values that distorts the plot and is excluded. For the

result under this case, please refer to Table 9. The results under different bandwidth are plotted as

points of different shapes. Difference in degree is represented by different colors.
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Figure 11: Sample Mean Squared Error under Network DGP 3

Notes: This figure plots the simulation results under Network DGP 3. The horizontal axis is the

number of schools and the vertical axis is the sample mean squared error as defined in Equation

(33). Each school contains 500 observations. The graph on the left calculates the the mean

squared error on the full support while the graph on the right truncates the support on both ends to

avoid boundary issues. The set of bandwidth is {0.2, 0.5, 1} while the set of degree is {3, 5, 8}. The

results under different bandwidth are plotted as points of different shapes. Difference in degree is

represented by different colors.

45



Figure 12: Sample Mean Squared Error under Network DGP 4

Notes: This figure plots the simulation results under Network DGP 4. The horizontal axis is the

number of individuals and the vertical axis is the sample mean squared error as defined in

Equation (33). The graph on the left calculates the the mean squared error on the full support

while the graph on the right truncates the support on both ends to avoid boundary issues. The set

of bandwidth is {0.2, 0.5, 1} while the set of degree is {3, 5, 8}. The results under different

bandwidth are plotted as points of different shapes. Difference in degree is represented by different

colors.
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L2 Loss on Interval
Degree Bandwidth #School [0.2, 1.05] [0.25, 1] [0.3, 0.95] [0.35, 0.9] [0.4, 0.85]

3

0.2

5 0.022 0.015 0.012 0.011 0.010
10 0.014 0.009 0.007 0.006 0.005
15 0.010 0.007 0.005 0.004 0.004
20 0.009 0.005 0.004 0.003 0.003

0.5

5 0.017 0.012 0.010 0.009 0.009
10 0.011 0.007 0.006 0.005 0.005
15 0.009 0.006 0.004 0.004 0.003
20 0.007 0.005 0.004 0.003 0.003

1

5 0.016 0.012 0.010 0.009 0.009
10 0.011 0.007 0.006 0.005 0.005
15 0.008 0.006 0.004 0.004 0.004
20 0.007 0.005 0.004 0.003 0.003

5

0.2

5 0.030 0.018 0.015 0.013 0.012
10 0.021 0.010 0.008 0.007 0.006
15 0.017 0.008 0.006 0.005 0.004
20 0.014 0.006 0.004 0.004 0.003

0.5

5 0.024 0.014 0.012 0.011 0.011
10 0.016 0.009 0.007 0.006 0.006
15 0.013 0.007 0.005 0.004 0.004
20 0.011 0.005 0.004 0.003 0.003

1

5 0.023 0.014 0.012 0.011 0.010
10 0.016 0.008 0.007 0.006 0.006
15 0.012 0.006 0.005 0.004 0.004
20 0.011 0.006 0.004 0.004 0.003

8

0.2

5 0.039 0.021 0.017 0.015 0.015
10 0.028 0.013 0.009 0.008 0.007
15 0.023 0.009 0.006 0.006 0.005
20 0.021 0.008 0.005 0.004 0.004

0.5

5 0.032 0.017 0.014 0.013 0.013
10 0.023 0.010 0.008 0.007 0.006
15 0.019 0.008 0.006 0.005 0.005
20 0.018 0.007 0.005 0.004 0.004

1

5 0.031 0.017 0.014 0.013 0.012
10 0.022 0.010 0.008 0.007 0.006
15 0.019 0.008 0.006 0.005 0.005
20 0.017 0.007 0.005 0.004 0.004

Table 8: L2 Loss under Network DGP1

Notes: This table shows the L2 loss under Network DGP 1. The results include different

configurations of the number of basis function (degree), bandwidth, number of schools. The L2

loss is calculated according to Equation (33) on different choices of [d1, dM ] reported in Column

4-8. The number of individuals (nodes) in each school (block) is set at 500. The number of

simulation repetition is set at 2000.
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L2 Loss on Interval
Degree Bandwidth #School [0.1, 0.85] [0.15, 0.8] [0.2, 0.75] [0.25, 0.7] [0.3, 0.65]

3

0.2

5 0.021 0.014 0.011 0.010 0.009
10 0.013 0.008 0.006 0.005 0.005
15 0.010 0.006 0.004 0.004 0.003
20 0.008 0.004 0.003 0.003 0.002

0.5

5 0.016 0.011 0.009 0.008 0.008
10 0.009 0.006 0.005 0.004 0.004
15 0.007 0.004 0.003 0.003 0.003
20 0.006 0.003 0.002 0.002 0.002

1

5 0.014 0.010 0.009 0.008 0.008
10 0.009 0.006 0.004 0.004 0.004
15 0.007 0.004 0.003 0.003 0.003
20 0.006 0.003 0.002 0.002 0.002

5

0.2

5 0.030 0.016 0.014 0.012 0.012
10 0.020 0.009 0.007 0.006 0.006
15 0.016 0.007 0.005 0.004 0.004
20 0.014 0.005 0.004 0.003 0.003

0.5

5 0.022 0.013 0.011 0.010 0.010
10 0.015 0.007 0.006 0.005 0.005
15 0.012 0.005 0.004 0.003 0.003
20 0.010 0.004 0.003 0.003 0.002

1

5 0.021 0.012 0.010 0.010 0.010
10 0.014 0.007 0.005 0.005 0.005
15 0.011 0.005 0.004 0.003 0.003
20 0.010 0.004 0.003 0.002 0.002

8

0.2

5 0.038 0.020 0.016 0.015 0.014
10 0.028 0.011 0.008 0.007 0.007
15 0.023 0.008 0.006 0.005 0.005
20 0.021 0.007 0.004 0.004 0.004

0.5

5 0.031 0.015 0.013 0.012 0.012
10 0.022 0.009 0.007 0.006 0.006
15 0.018 0.006 0.004 0.004 0.004
20 0.016 0.005 0.003 0.003 0.003

1

5 0.029 0.015 0.012 0.011 0.011
10 0.021 0.008 0.006 0.006 0.006
15 0.017 0.006 0.004 0.004 0.004
20 0.016 0.005 0.003 0.003 0.003

Table 9: L2 Loss under Network DGP2

Notes: This table shows the L2 loss under Network DGP 2. The results include different

configurations of the number of basis function (degree), bandwidth, number of schools. The L2

loss is calculated according to Equation (33) on different choices of [d1, dM ] reported in Column

4-8. The number of individuals (nodes) in each school (block) is set at 500. The number of

simulation repetition is set at 2000.
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L2 Loss on Interval
Degree Bandwidth #School [−0.2, 2] [−0.15, 1.95] [−0.05, 1.85] [0.1, 1.7] [0.3, 1.5]

3 (0,1]

5 0.028 0.023 0.017 0.012 0.010
10 0.021 0.017 0.012 0.008 0.006
15 0.017 0.014 0.009 0.006 0.004
20 0.015 0.012 0.008 0.005 0.004

5 (0,1]

5 0.055 0.046 0.038 0.028 0.016
10 0.036 0.028 0.021 0.014 0.009
15 0.030 0.023 0.016 0.011 0.007
20 0.027 0.021 0.014 0.010 0.005

8 (0,1]

5 11.145 11.378 9.425 4.052 0.633
10 0.875 0.879 0.688 0.269 0.048
15 0.674 0.631 0.476 0.183 0.031
20 0.378 0.370 0.272 0.088 0.013

Table 10: L2 Loss under Network DGP3

Notes: This table shows the L2 loss under Network DGP 3. The results include different

configurations of the number of basis function (degree), number of schools. All bandwidth

satisfying 0 < b ≤ 1 yields the same L2 loss as argued in the text. The L2 loss is calculated

according to Equation (33) on different choices of [d1, dM ] reported in Column 4-8. The number

of individuals (nodes) in each school (block) is set at 500. The number of simulation repetition is

set at 2000.
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L2 Loss on Interval
Degree Bandwidth n [0.1, 0.85] [0.15, 0.8] [0.2, 0.75] [0.25, 0.7] [0.3, 0.65]

3

0.2

500 0.073 0.049 0.039 0.035 0.031
1000 0.047 0.030 0.023 0.019 0.017
1500 0.039 0.023 0.016 0.013 0.011
2500 0.029 0.017 0.011 0.008 0.007

0.5

500 0.062 0.042 0.034 0.030 0.027
1000 0.042 0.027 0.021 0.017 0.015
1500 0.035 0.021 0.015 0.012 0.011
2500 0.026 0.015 0.010 0.008 0.007

1

500 0.062 0.042 0.034 0.030 0.026
1000 0.041 0.027 0.020 0.017 0.015
1500 0.035 0.021 0.015 0.012 0.011
2500 0.026 0.015 0.010 0.008 0.006

5

0.2

500 0.106 0.077 0.064 0.050 0.042
1000 0.070 0.048 0.037 0.028 0.022
1500 0.056 0.036 0.028 0.020 0.015
2500 0.044 0.025 0.018 0.013 0.010

0.5

500 0.091 0.066 0.054 0.043 0.036
1000 0.064 0.043 0.034 0.025 0.020
1500 0.053 0.033 0.025 0.018 0.014
2500 0.042 0.024 0.017 0.012 0.009

1

500 0.090 0.066 0.054 0.042 0.035
1000 0.063 0.043 0.034 0.025 0.020
1500 0.053 0.033 0.025 0.018 0.014
2500 0.042 0.024 0.017 0.012 0.009

8

0.2

500 1.225 0.889 0.325 0.116 0.070
1000 1.178 0.926 0.386 0.117 0.044
1500 0.287 0.201 0.087 0.042 0.027
2500 0.135 0.089 0.047 0.027 0.019

0.5

500 0.986 0.712 0.260 0.095 0.059
1000 1.103 0.868 0.362 0.109 0.041
1500 0.285 0.198 0.083 0.039 0.026
2500 0.130 0.085 0.044 0.026 0.018

1

500 0.941 0.679 0.249 0.093 0.059
1000 1.016 0.796 0.333 0.103 0.040
1500 0.290 0.203 0.085 0.039 0.026
2500 0.130 0.085 0.044 0.026 0.018

Table 11: L2 Loss under Network DGP4

Notes: This table shows the L2 loss under Network DGP 4. The results include different

configurations of the number of basis function (degree), bandwidth, number of nodes (n). The L2

loss is calculated according to Equation (33) on different choices of [d1, dM ] reported in Column

4-8. The number of simulation repetition is set at 2000.
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Variable Mean Standard Deviation Min Max Sample Size
Yi 0.633 0.218 0 1 8,163
Di 0.633 0.096 0.125 0.929 8,152
Ti 0.068 0.252 0 1 8,163

ni (Degree) 9.894 3.876 1 32 8,152

Notes: This table contains the summary statistics for the index constructed based on the

questions in the section ‘Respondent Attitudes’ contained in the Wave II survey. The variable Yi
is constructed based on the eight questions that more directly reflects individual attitude. Each

sample is an individual. Samples are excluded if (1) answer does not fall in {0, 1} for the binary

questions, (2) contain missing values for any variables listed in the table.

Table 12: Summary Statistics under Alternative Construction of Yi
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Figure 13: Estimated Treatment Effect under Different Bandwidth and Degree

Notes: This plot shows τT (Di) at different values of Di in [0.55, 0.77]. The outcome variable is

the index constructed using all the questions in the section ‘Respondent Attitudes’ contained in

the Wave II survey. The range plotted corresponds to the range in the data truncated by 0.1 both

to the left and to the right. It attempts to deal with the problem at the boundary. The x-axis is

Di and the y-axis is τ̂T .
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Figure 14: Estimated Treatment Effect Based on Partial Index

Notes: This plot shows τT (Di) at different values of Di in [0.36, 0.83]. The outcome variable is

the partial index constructed using only the eight questions directly reflecting individual attitude

towards conflict. This range corresponds to the range in the data truncated by 0.1 both to the

left and to the right. It attempts to deal with the problem at the boundary. The x-axis is Di and

the y-axis is τ̂T . The purple area are point-wise 95% confidence intervals obtained from

bootstrapping the schools.
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B Proofs

B.1 ψ-dependence

The proof of consistency uses the definition of ψ-dependence and the law of large numbers

for ψ-dependent variables from Kojevnikov et al. (2021). For any two nodes i, j, let ℓ(i, j) be

the distance of the shortest path between i, j (i.e., the smallest integer k such that Ak
ij > 0

and Al′
ij = 0 for all k′ < k). For any two sets A,B ⊆ Nn where Nn is the collection of nodes,

let ℓ(A,B) := {mini,j ℓ(i, j), i ∈ A, j ∈ B}. Denote YB := (Yi : i ∈ B) for any set B ⊆ Nn.

Let La be the set of bounded Lipschitz function from R
a → R.

Definition 1 A triangular array {Yi}ni=1 is called ψ-dependent, if for each n there exists a

sequence {θn,s}s≥0, θn,0 = 1 and a collection of non-random functional (ψa,b)a,b∈N : La×Lb →
[0,∞), such that for all A,B ∈ Pn(a, b, s) with s > 0 and all f ∈ La and g ∈ Lb:

|Cov(f(YA), g(YB))| ≤ ψa,b(f, g)θn,s (39)

where

Pn(a, b, s) := {(A,B) : A,B ⊆ Nn, |A| = a, |B| = b, ℓ(A,B) ≥ s} (40)

Assumption B.1 There exists a finite integer S ≥ 1 such that (vi, Xi, Ti) ⊥ (vj, Xj, Tj) for

any i, j with ℓ(i, j) ≥ S

Lemma B.1 Assume that Assumption 3.2, 5.1, B.1 hold. Then {Yi}ni=1 is ψ-dependent with

θn,s =

1 s ≤ 2S + 1

θ̃n,s s > 2S + 1

ψa,b(f, g) = 4[aLip(f)∥g∥∞ + bLip(g)∥f∥∞ + ∥f∥∞∥g∥∞]

θ̃n,s := max

{
max
i∈A

E[|Yi − Yi(ȳ; ⌊s⌋)|],max
j∈B

E[|Yj − Yj(ȳ; ⌊s⌋)|]
}

and

θ̃n,s ≤
κs

1− κ
E[|Yi|]

Proof. Define Ni(L) := {j : ÃL
ij > 0} as the set of neighbors that can be reached within L

steps from node i. Let Di(L) := (Dj : j ∈ Ni(L)) be the vector of average knowledge of the
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nodes that can be reached in L steps from i. Denote the following set of variables:

σj,L := g(Dj, Tj, Xj, vj) ∀j ∈ Ni(L)

σj,l := g

(∑
k

Ãjkσk,l+1, Tj, Xj, vj

)
∀j ∈ Ni(L− l), 1 ≤ l ≤ L− 1

σi,0 := Yi = g

(∑
j

Ãijσj,1, Ti, Xi, vi

) (41)

The above process represents expanding the knowledge equation L times starting from node i.

By Assumption 3.2, Yi can be approximated by the above with σj,L replaced by an arbitrary

constant when L is large enough. This is because the influence of others nodes diminishes

geometrically in distance. The term σj,l represents the knowledge of a node j that can be

reached within l steps from node i, and the term σi,0 is the knowledge of node i. The above

representation suggests that for arbitrary L, Yi depends on Di(L) and {Tj, Xj, vj} for all

j ∈
⋃

l≤LNi(l).

By Equation (41), we have Yi = Y ({Dj}j∈Ni(L), {Tk, Xk, vk}k∈Ni(l),1≤l≤L−1) where we ex-

pand the structural equation L times. Let

Yi(a;L) := Y ({a}j∈Ni(L), {Tk, Xk, vk}k∈Ni(l),1≤l≤L−1) (42)

where we replace the value ofDj by a for all j ∈ Ni(L). By definition of S, Yi(a, L) ⊥ Yj(a, L)

if ℓ(i, j) > 2S. In addition, Assumption

For any s ≤ 2S + 1, |Cov(f(YA), g(YB))| ≤ 4∥f∥∞∥g∥∞ by boundedness of Y and f, g.

For s > 2S + 1,

|Cov(f(YA), g(YB))|

= |Cov(f(YA)− f(YA(ȳ; ⌊s⌋)) + f(YA(ȳ; ⌊s⌋)), g(YB))|

≤ |Cov(f(YA)− f(YA(ȳ; ⌊s⌋)), g(YB))|

+ |Cov(f(YA(ȳ; ⌊s⌋)), g(YB)− g(YB(ȳ; ⌊s⌋)) + g(YB(ȳ; ⌊s⌋)))|

≤ |Cov(f(YA)− f(YA(ȳ; ⌊s⌋)), g(YB))|+ |Cov(f(YA(ȳ; ⌊s⌋)), g(YB)− g(YB(ȳ; ⌊s⌋)))|
(Cov(f(YA(ȳ; ⌊s⌋)), g(YB(ȳ; ⌊s⌋))) = 0)

≤ 2E[|f(YA)− f(YA(ȳ; ⌊s⌋))|]∥g∥∞ + 2E[|g(YB)− g(YB(ȳ; ⌊s⌋))|]∥f∥∞
≤ 2aLip(f)max

i∈A
E[|Yi − Yi(ȳ; ⌊s⌋)|]∥g∥∞ + 2bLip(g)max

j∈B
E[|Yj − Yj(ȳ; ⌊s⌋)|]∥f∥∞

(f, g are Lipschitz functions with bounded Lipschitz constants)

≤ 2aLip(f)θ̃n,s∥g∥∞ + 2bLip(g)θ̃n,s∥f∥∞
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which suggests that we can take ψa,b(f, g) = 4[aLip(f)∥g∥∞ + bLip(g)∥f∥∞ + ∥f∥∞∥g∥∞].

In addition θ̃n,s ≤ κs

1−κ
E[|Yi|] by Assumption 3.2, B.1.

Corollary B.1 Assume that Assumption 3.2, B.1 hold. Then {Di}ni=1 is ψ-dependent with

θn,s =

1 s ≤ 2S + 3

θ̃n,s s > 2S + 3

ψa,b(f, g) = 4[aLip(f)∥g∥∞ + bLip(g)∥f∥∞ + ∥f∥∞∥g∥∞]

θ̃n,s := max

{
max
i∈A

E[|Yi − Yi(ȳ; ⌊s⌋)|],max
j∈B

E[|Yj − Yj(ȳ; ⌊s⌋)|]
}

and

θ̃n,s ≤
κs

1− κ
E[|Yi|]

The proof is exactly the same as the one in Lemma B.1 and the change from 2S+1 to 2S+3

is due to the fact that Di is the average of nodes that are one-step away from i.

B.2 Technical Lemma

The assumption of bounded derivative also ensures that the effect decays at a geometric

rate, or faster, formalized by the following lemma.

Lemma B.2 Assume Assumption 3.2, 3.1, 3.3, 3.4 hold. At initial treatment T with Ti = 0,

let Ỹ be the corresponding knowledge. For treatment T∗ such that T ∗
j = Tj ∀j ̸= i and T ∗

i = 1,

denote the resulting knowledge as Y∗. Then the following holds:

|Y ∗
j − Ỹj| ≤

κℓ

1− κ

(
max

k:Aik=1

1

nk

)
|g(D̃i, 1, Xi, vi)− g(D̃i, 0, Xi, vi)| ≤

κℓ

1− κ

(
max

k:Aik=1

1

nk

)
|Y ∗

i − Ỹi|

where D̃i =
1∑
j Aij

∑
j AijỸj and ℓ is the length of the shortest path connecting i, j.

Proof. Define Y(0) to be such that Yk(0) = Ỹk if k ̸= i and Yi(0) = g(D̃i, 1, Xi, vi). Further

define Y(n) = g(ÃY(n−1),X,v). As shown in the proof of Proposition 3.2, |Yj(n)−Yj(n−1)| ≤
κÃj|Yj(n−1) − Yj(n−2)|. This implies that |Yj(n′) − Yj(0)| = 0 for any n′ < ℓ. Also,

|Y ∗
j − Yj(0)| ≤

1

1− κ
∥Y(ℓ) −Y(ℓ−1)∥∞ ≤ κℓ

1− κ
∥Y(1) −Y(0)∥∞

=
κℓ

1− κ

(
max

k:Aik=1

1

nk

)
|g(D̃i, 1, Xi, vi)− g(D̃i, 0, Xi, vi)|
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Lemma B.3 Let {Yi,Wi, Bi}ni=1 be a set of random variables and let the bold-faced letter

denote the entire vector. For instance, Y = (Y1, Y2, · · · , Yn). Consider the conditional

expectation E[Yi − Yj|C(W,B,Y)] for some event C. Assume that the following holds:

E[Yi − Yj|C(W,B,Y)] = E[Yi − Yj|C ′(W,B,Y−ij, h(Yi, Yj))]

for some symmetric function h(a, b) = h(b, a). Also assume that Yi, Yj are i.i.d. conditional

on B and Y ⊥ W conditional on B.

Then the conditional expectation equals zero:

E[Yi − Yj|C(W,B,Y)] = 0

Proof.

E[Yi − Yj|C(W,B,Y)]

= E[Yi − Yj|C ′(T,X,V−ij, h(Vi, Vj))]

= E

[
E[Yi − Yj|W,B,Y−ij, h(Vi, Vj), C ′(W,B,Y−ij, h(Yi, Yj))]

∣∣∣∣C ′(W,B,Y−ij, h(Yi, Yj))

]
= E

[
E[Yi − Yj|W,B,Y−ij, h(Yi, Yj)]

∣∣∣∣C ′(W,B,Y−ij, h(Yi, Yj))

]
= E

[
E[Yi − Yj|X, h(Yi, Yj)]

∣∣∣∣C ′(W,B,Y−ij, h(Yi, Yj))

]
((Yi, Yj) ⊥ (W,Y−ij) conditional on B)

= E

[
0

∣∣∣∣C ′(W,B,Y−ij, h(Yi, Yj))

]
(Lemma B.4)

= 0

where the second last equality follows from substituting Yi = V1, Yj = V2 and X = S in

Lemma B.4.

Lemma B.4 Assume the following holds for the variables V1, V2 ∈ R, S ∈ R
k and the

function h : R×R→ R:

1. Conditional i.i.d.: V1, V2 are i.i.d. conditional on S

2. Symmetry: h(a, b) = h(b, a)

Then, under the above assumptions, the following holds:

E[V1 − V2|h(V1, V2) = u, S = s] = 0 ∀(u, s)

57



Proof. For any value t, define h1(V ; t) := h(t, V ) and h2(V ; t) := h(V, t). By symmetry, we

have h1(V ; t) = h2(V ; t).

It suffices to show that V1, V2 have the same conditional distribution.

fV1|h(V1,V2),S(v|u, s)

=
fV1,h(V1,V2),S(v, u, s)

fh(V1,V2),S(u, s)
=

fS(s)

fh(V1,V2),S(u, s)
fV1,h(V1,V2)|S(v, u|s)

=
fS(s)

fh(V1,V2),S(u, s)
fh(V1,V2)|V1,S(u|v, s)fV1|S(v|s)

=
fS(s)

fh(V1,V2),S(u, s)
fh(v,V2)|V1,S(u|v, s)fV1|S(v|s)

=
fS(s)

fh(V1,V2),S(u, s)
fh1(V2;v)|S(u|s)fV1|S(v|s) (V1, V2 are independent conditional on S)

=
fS(s)

fh(V1,V2),S(u, s)
fh1(V1;v)|S(u|s)fV2|S(v|s)

(V1, V2 are identically distributed conditional on S)

=
fS(s)

fh(V1,V2),S(u, s)
fh2(V1;v)|S(u|s)fV2|S(v|s) (h1(V1; v) = h2(V1; v) by symmetry)

=
fS(s)

fh(V1,V2),S(u, s)
fh(V1,V2)|V2,S(u|v, x)fV2|S(v|s)

=
fS(s)

fh(V1,V2),S(u, s)
fV2,h(V1,V2)|S(v, u|s)

= fV2|h(V1,V2),S(v|u, s)

We have shown that V1, V2 has the same density conditional on (h(V1, V2), S), which implies

the desired equality in first moment.

Lemma B.5 Assume the following holds for the variables V1, V2 ∈ R, S ∈ R
k and the

function h : R×R→ R:

1. Conditional independence: V1, V2 are independent conditional on S

2. Symmetry: h(a, b) = h(b, a)

3. Near identical distribution: supv |fV1|S(v|s)− fV2|S(v|s)| ≤ ϵ

4. Bounded density: 0 < f ≤ inf fV2|S(v|s)

Then, under the above assumptions, there exists some constant C such that the following
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holds:

|E[V1 − V2|h(V1, V2) = u, S = s]| < ϵ

f
|E[V1|h(V1, V2) = u, S = s]| ∀(u)

Proof. For any value t, define h1(V ; t) := h(t, V ) and h2(V ; t) := h(V, t). By symmetry, we

have h1(V ; t) = h2(V ; t).

It suffices to show that V1, V2 have the same conditional distribution.

|fV1|h(V1,V2),S(v|u, s)− fV2|h(V1,V2),S(v|u, s)|

=
fS(s)

fh(V1,V2),S(u, s)
fh1(V2;v)|S(u|s)|fV1|S(v|s)− fV2|S(v|s)| (Proof in Lemma B.4)

≤ fS(s)

fh(V1,V2),S(u, s)
fh1(V2;v)|S(u|s)ϵ

=
fS(s)

fh(V1,V2),S(u, s)
fh1(V2;v)|S(u|s)

fV2|S(v|s)
fV2|S(v|s)

ϵ

≤ fS(s)

fh(V1,V2),S(u, s)
fV2,h(V1,V2)|S(v, u|s)

(
1 +

ϵ

f

)
(bounded density)

= fV2|h(V1,V2),S(v|u, s)
(
1 +

ϵ

f

)
The result follows from

|E[V1 − V2|h(V1, V2) = u, S = s]| ≤ |
∫
v|fV1|h(V1,V2),S(v|u, s)− fV2|h(V1,V2),S(v|u, s)|dv|

≤ |
∫
v
ϵ

f
fV2|h(V1,V2),S(v|u, s)dv|

=
ϵ

f
|E[V1|h(V1, V2) = u, S = s]

Lemma B.6 Let Assumption 4.1, 5.1, 5.5 hold. Further assume that the kernel K1 has

bounded support. Then the following holds:

V ar

(
1

n

n∑
i=1

∑
j ̸=i

(vi − vj)ωij

)
= o(1) (43)

Proof. Define the following objects:

mij := (vi − vj)ωij

Mi :=
∑
j ̸=i

mij
(44)
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Firstly, V ar(Mi) ≤ CM for some constant CM by the boundedness of E[|vi|4|Ai, Xi] in

Assumption 5.1, and that
∑

j ωij = 1, ωij ≥ 0. For the covariance, first realize that

Cov(Mi,Mk) = 0 for any k ∈ N∂
n (i; s) with s ≥ 5.

Cov(Mi,Mk) = Cov

(∑
j ̸=i

mij,
∑
l ̸=k

mkl

)

By the conditional independence assumption on vi in Assumption 4.1, Cov(mij,mkl) ̸= 0

only under the event {i = l}∪ {k = j}∪ {j = l} (i.e. there is overlapping in the index). For

any k ∈ N∂
n (i; s) with s ≥ 5, it must be that ωik = 0 and ωki = 0 for n large enough since

they share no node in common and that K1 is compactly supported. It remains to consider

the case where {j = l}. For ωij ̸= 0, it must be that j be at most 2-step away from i. This

is because i, j must share common links for ωij ̸= 0. Similarly, for ωkl ̸= 0, l must be at most

2-step away from k. However, when k ∈ N∂
n (i; s) with s ≥ 5, there is no node that is within

2-step away from both i, k. Thus the covariance term equals zero.

It follows that

1

n2

∑
i

∑
k ̸=i

|Cov(Mi,Mk)| =
1

n2

∑
i

∞∑
s=1

∑
k∈N∂

n (i;s)

|Cov(Mi,Mk)|

=
1

n2

∑
i

4∑
s=1

∑
k∈N∂

n (i;s)

|Cov(Mi,Mk)|

(Cov(Mi,Mk) = 0 for any k ∈ N∂
n (i; s) with s ≥ 5)

≤ 1

n2

∑
i

4∑
s=1

∑
k∈N∂

n (i;s)

2CM (Cauchy-Schwarz inequality)

≤ 2CM
1

n

∑
i

1

n

4∑
s=1

|N∂
n (i; s)|

= 2CM
1

n

4∑
s=1

δ∂n(s; 1) = o(1) (by Assumption 5.5 and κ ∈ (0, 1))

Therefore,

V ar

(
1

n

n∑
i=1

Mi

)
=

1

n2

n∑
i=1

V ar(Mi) +
1

n2

∑
i

∑
k ̸=i

Cov(Mi,Mk)

≤ 1

n2

n∑
i=1

CM +
1

n2

∑
i

∑
k ̸=i

|Cov(Mi,Mk)| = o(1)
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Lemma B.7 Assume that Assumption 3.2, 4.1, 5.1 - 5.6 hold. Further assume that As-

sumption 5.7 or Assumption 5.8 holds. For any q, Ln(q; b)
p−→ L(q) + C for some constant

C independent of q.

Proof. For the proof, I will write 1
n

∑n
i=1 instead of 1

|T |
∑

i∈T for ease of notation. The

intuition remains the same since |T | also diverges.

Define the following quantities:

m1,ij := [|Ti − Tj|τT (Di, Xi)− |Ti − Tj|q(Di, Xi)]

m2,ij := [g(Di, Tj, Xj)− g(Dj, Tj, Xj)]

m3,ij := [(Ti − Tj)(vi − vj)]

Expand Ln:

Ln(q; b)

:=
1

n

n∑
i=1

∑
j ̸=i

[(Ti − Tj)(Yi − Yj)− |Ti − Tj|q(Di, Xi)]
2ωij

=
1

n

n∑
i=1

∑
j ̸=i

[m2
1,ij +m2

2,ij +m2
3,ij + 2m1,ijm2,ij + 2m1,ijm3,ij + 2m2,ijm3,ij]ωij

Step 1: First show that the cross term 1
n

∑
i

∑
j m1,ijm3,ijωij vanishes. This is carried out

in two steps. In Step 1.1, I show that 1
n

∑n
i=1

∑
j ̸=i[m1,ijm3,ijωij − E[m1,ijm3,ijωij]] = op(1)

through L2 convergence. In Step 1.2, I show that E[m1,ijm3,ijωij] = o(1). It is useful to

rewrite the summation as follows:

1

n

n∑
i=1

∑
j ̸=i

m1,ijm3,ijωij

=
1

n

∑
i

(τT (Di, Xi)− q(Di, Xi))

vi − ∑
j:Tj=0

vjωij

 (
∑

j ωij = 1)

Define the following objects:

γn(Ai, Xi) :=
∑
j

vjωij

γ(Ai, Xi) := E[vj|Aj = Ai, Xj = Xi, Tj = 0]

Notice that γ(Ai, Xi) = E[Tjvj|Aj = Ai, Xj = Xi] = E[Tjvj|Aj = Ai, Xj = Xi, Dj = Di] so

we could equivalently think of it as γ(Ai, Xi, Di).
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Step 1.1 : The following result holds:

1

n

n∑
i=1

∑
j ̸=i

[m1,ijm3,ijωij − E[m1,ijm3,ijωij]]

=
1

n

∑
i

(τT (Di, Xi)− q(Di, Xi))[vi − γ2,n(Ai, Xi)]− E[Ti(τT (Di, Xi)− q(Di, Xi))[vi − γ2,n(Ai, Xi)]])

= op(1)

The convergence result follows from the following L2 convergence argument: Assumption 5.1

implies that

V ar

(
1

n

∑
i

(τT (Di, Xi)− q(Di, Xi))[(vi − γ2,n(Ai, Xi))]

)
≤ 4ȳV ar

(
1

n

∑
i

(vi − γ2,n(Ai, Xi))

)
= o(1) (Lemma B.6)

This implies that V ar( 1
n

∑
i(τT (Di, Xi)− q(Di, Xi))[(vi − γ2,n(Ai, Xi))]) −→ 0.

Step 1.2 : Now show that E[m1,ijm3,ijωij] = o(1) under either Assumption 5.8 or As-

sumption 5.7.

Step 1.2.1 : Consider first the case where Assumption 5.7 holds. Define ω̃j := ωj1{Ai =

Aj, ∥Xi −Xj∥2 ≤ C ′b}.

ωj − ω̃j = ωj1{Ai ̸= Aj, ∥Xi −Xj∥2 ≤ C ′b}+ ωj1{∥Xi −Xj∥2 > C ′b}

= ωj1{Ai ̸= Aj, ∥Xi −Xj∥2 ≤ C ′b} (compact support of K2)

However, since K1 has compact support and Ai has finite support, K1(
sij
b
) = 0 for any

Ai ̸= Aj for n large enough. As a result, ωj − ω̃j = 0 for n large enough.

These imply that

E[vi − γ2,n(Ai, Xi)|Ai, Di, Xi] = E

[∑
j

ω̃jvi −
∑
j

ω̃jvj|Ai, Di, Xi

]
(by

∑
j ω̃j = 1 for large n)

= E

[∑
j

ω̃jE[vi − vj|Ai = Aj, Xi, Xj, ∥Xi −Xj∥2 ≤ C ′b,Di]|Ai, Di, Xi

]
(ω̃j = 0 for Ai ̸= Aj or ∥Xi −Xj∥2 > C ′b)

= E

[∑
j

ω̃jE[vi − vj|Ai = Aj, Xi, Xj, ∥Xi −Xj∥2 ≤ C ′b, vi + vj]|Ai, Di, Xi

]
(Di depends only on vi + vj when Ai = Aj by the identification argument in Proposition 4.1)
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Applying Lemma B.5, we have

|E[vi − γ2,n(Ai, Xi)|Ai, Di, Xi]|

≤ E

[∑
j

ω̃j|E[vi − vj|Ai = Aj, Xi, Xj, ∥Xi −Xj∥2 ≤ C ′b, vi + vj]||Ai, Di, Xi

]

≤ E

[∑
j

ω̃j|E[vi|Ai, Xi, vi + vj]|
η

f
|Ai, Di, Xi

]
(Lemma B.5)

≤ E

[∑
j

ω̃jE[|vi||Ai, Xi, vi + vj]
η

f
|Ai, Di, Xi

]
= E

[∑
j

ω̃jE[|vi||Ai, Xi, Di]
η

f
|Ai, Di, Xi

]
(conditional independence as argued in Proposition 4.1)

= E[|vi||Ai, Xi, Di]
η

f
(by

∑
j ω̃j = 1)

where |fVi|Ai,Xi
(v|a, x)− fVi|Ai,Xi

(v|a, x′)| < η for any ∥x−x′∥2 ≤ C ′b. To apply Lemma B.5,

replace V1, V2 by vi, vj, h(V1, V2) by v1 + v2, S by (Xi, ∥Xj −Xi∥2).
These imply that

|E[Ti(τT (Di, Xi)− q(Di, Xi))[vi − γ2,n(Ai, Xi)]]|

= |E[Ti(τT (Di, Xi)− q(Di, Xi))[E[vi − γ2,n|Ai, Di, Xi]]]|

≤ E[|Ti(τT (Di, Xi)− q(Di, Xi))||E[vi − γ2,n|Ai, Di, Xi]|]

≤ E[|Ti(τT (Di, Xi)− q(Di, Xi))|E[|vi||Ai, Xi, Di]]
η

f

= E[|Ti(τT (Di, Xi)− q(Di, Xi))||vi|]
η

f
(Law of iterated expectation)

≤ ∥τT (Di, Xi)− q(Di, Xi)∥∞E[v2i ]
η

f
= o(1)

The o(1) result holds since η can be made arbitrarily small. Therefore, E[m1,ijm3,ijωij] = o(1)

as desired.
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Step 1.2.2 : Now consider the case where Assumption 5.8 holds. Then we have

E[Ti(τT (Di, Xi)− q(Di, Xi))[vi − γ2,n(Ai, Xi)]]

≤ E

[
Ti(τT (Di, Xi)− q(Di, Xi))

[∑
j

ωij1{sij ≤ Cb}vi −
∑
j

vjωij1{sij ≤ Cb}

]]
(support condition on K1 imposed by Assumption 5.8 and

∑
j ωj = 1)

= E

[∑
j

Tiωij1{sij ≤ Cb}E[(τT (Di, Xi)− q(Di, Xi))(vi − vj)|Ai, Aj, Ti, Tj, Xi, Xj]

]
≤ E [1{sij ≤ Cb}tl(sij)] (

∑
j ωij = 1)

= o(1)

The convergence result follows from point 1 of Assumption 5.8. In addition τT (Di, Xi) −
q(Di, Xi) is a Lipschitz function with respect to Di for any Xi.

Step 2: Next show that the terms involvingm2,ij vanishes almost surely. By Assumption

3.2, 5.2, m2,ij ≤ Lip(x)(Xi−Xj)+κ(Di−Dj). In addition, |Di−Dj| ≤ sij2ȳ+(Ãi− Ãj)
′v.

It follows that

|m2,ij| ≤ |Lip(x)(Xi −Xj)|+ 2κsij ȳ + κ|(Ãi − Ãj)
′v|

Define m̄2,ij := |Lip(x)(Xi−Xj)|+2κsij ȳ. For an arbitrary ϵ, there exists a pair (δx, δs) such

that |m̄2,ij| < ϵ if |Xi −Xj| < δx and sij < δs. However, b→ 0 implies that ωij → 0 for any

|Xi −Xj| > δx or sij > δs. Since b→ 0 as n→ ∞, there exists nϵ such that b < min{δx, δs}
for all n > nϵ. This implies that for any n > nϵ:∣∣∣∣∣ 1n∑

i

∑
j ̸=i

m̄2
2,ijωij

∣∣∣∣∣ ≤ 1

n

∑
i

∑
j ̸=i

|m̄2
2,ijωij|

=
1

n

∑
i

∑
j ̸=i

|m̄2
2,ijωij(1{|Xi −Xj| < δx, sij < δϵ})|

≤ 1

n

∑
i

∑
j ̸=i

ϵ2ωij = ϵ2

Therefore, P (
∣∣∣ 1n∑i

∑
j ̸=i m̄

2
2,ijωij

∣∣∣ > ϵ2) = 0 for all n > nϵ. By the Borel-Cantelli Lemma, it

follows that

P

(∣∣∣∣∣ 1n∑
i

∑
j ̸=i

m̄2
2,ijωij

∣∣∣∣∣ > ϵ2 infinitely often

)
= 0
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Since ϵ is arbitrary, we have

1

n

∑
i

∑
j ̸=i

m̄2
2,ijωij

a.s.−−→ 0

I show convergence in L2 norm for the term involving |(Ãi − Ãj)
′v|. Define

rij := [(Ãi − Ãj)
′vωij]

2Ri :=
∑
j

rij

It follows that

E

∣∣∣∣∣ 1n∑
i

∑
j ̸=i

|(Ãi − Ãj)
′v|2ωij

∣∣∣∣∣
2
 = E

∣∣∣∣∣ 1n∑
i

Ri

∣∣∣∣∣
2


=
1

n2

∑
i

E[R2
i ] +

1

n2

∑
i

∑
j ̸=i

E[RiRj]

= o(1)

The last equality follows from two arguments. First, as in the proof of Lemma B.6∣∣∣∣∣ 1n2

∑
i

∑
j ̸=i

E[RiRj]

∣∣∣∣∣ = o(1)

Second, E[R2
i ] is bounded, which ensures 1

n2

∑
iE[R

2
i ] = o(1).

The convergence in probability result thus follows:∣∣∣∣∣ 1n∑
i

∑
j ̸=i

m2
2,ijωij

∣∣∣∣∣ ≤ 2

∣∣∣∣∣ 1n∑
i

∑
j ̸=i

m̄2
2,ijωij

∣∣∣∣∣
+ 2

∣∣∣∣∣ 1n∑
i

∑
j ̸=i

κ2|(Ãi − Ãj)
′v|2ωij

∣∣∣∣∣
p−→ 0

The same analysis applies to 1
n

∑
i

∑
j ̸=im2,ijm1,ijωij by boundingm1,ij using Assumption

5.1.
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Step 3: I show that 1
n

∑n
i=1

∑
j ̸=i(m

2
1,ijωij − E[m2

1,ijωij]) = op(1). However, notice that

E[
1

n

n∑
i=1

∑
j ̸=i

m2
1,ijωij] = E[(τT (Di, Xi)− q(Di, Xi))

2|i ∈ T ]

by
∑

j ωij = 1. The desired result hence follows.

To show the first convergence result, it suffices to show that V ar( 1
n

∑n
i=1

∑
j ̸=im

2
1,ijωij) =

o(1). This follows from the proof of Theorem 3.1 in Kojevnikov et al. (2021). To apply the

result in Kojevnikov et al. (2021), I verify that the assumptions hold. By Corollary B.1,

Di is ψ-dependent with θn,s = Cκs where C is some constant. In addition ψa,b(f, g) =

4[aLip(f)∥g∥∞ + bLip(g)∥f∥∞ + ∥f∥∞∥g∥∞] satisfies Assumption 2.1 in Kojevnikov et al.

(2021). Assumption 3.1 and 3.2 in Kojevnikov et al. (2021) are implied by Assumption 5.1,

5.5. Finally, τ, q are both Lipschitz.

Step 4: 1
n

∑n
i=1

∑
j ̸=im

2
3,ijωij

p−→ C where C is some constant independent of q. To

show this, it suffices to show that its variance tends to zero. Define Mi :=
∑

j ̸=im
2
3,ijωij.

Firstly, V ar(Mi) ≤ CM for some constant CM by the boundedness of E[|vi|4|Ai, Xi] and

that
∑

j ωij = 1, ωij ≥ 0. For the covariance, first realize that Cov(Mi,Mk) = 0 for any

k ∈ N∂
n (i; s) with s ≥ 5. To see this, first recall that m3,ij = (Ti − Tj)(vi − vj).

Cov(Mi,Mk) = Cov

(∑
j ̸=i

m2
3,ijωij,

∑
l ̸=k

m2
3,klωkl

)

By the conditional independence assumption on vi, Cov(m
2
3,ij,m

2
3,kl) ̸= 0 only under the event

{i = l} ∪ {k = j} ∪ {j = l} (i.e. there is overlapping in the index). For any k ∈ N∂
n (i; s)

with s ≥ 5, it must be that ωik = 0 and ωki = 0 for n large enough since they share no

node in common and that K1 is compactly supported. It remains to consider the case where

{j = l}. For ωij ̸= 0, it must be that j be at most 2-step away from i. This is because, i, j

must share common links for ωij ̸= 0. Similarly, for ωkl ̸= 0, l must be at most 2-step away

from k. However, when k ∈ N∂
n (i; s) with s ≥ 5, there is no node that is within 2-step away

from both i, k. Thus the covariance term equals zero.
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It follows that

1

n2

∑
i

∑
k ̸=i

|Cov(Mi,Mk)| =
1

n2

∑
i

∞∑
s=1

∑
k∈N∂

n (i;s)

|Cov(Mi,Mk)|

=
1

n2

∑
i

4∑
s=1

∑
k∈N∂

n (i;s)

|Cov(Mi,Mk)|

(Cov(Mi,Mk) = 0 for any k ∈ N∂
n (i; s) with s ≥ 5)

≤ 1

n2

∑
i

4∑
s=1

∑
k∈N∂

n (i;s)

2CM (Cauchy-Schwarz inequality)

≤ 2CM
1

n

∑
i

1

n

4∑
s=1

|N∂
n (i; s)|

= 2CM
1

n

4∑
s=1

δ∂n(s; 1) = o(1) (by Assumption 5.5 and κ ∈ (0, 1))

Therefore,

V ar

(
1

n

n∑
i=1

Mi

)
=

1

n2

n∑
i=1

V ar(Mi) +
1

n2

∑
i

∑
k ̸=i

Cov(Mi,Mk)

≤ 1

n2

n∑
i=1

CM +
1

n2

∑
i

∑
k ̸=i

|Cov(Mi,Mk)| = o(1)

B.3 Proof of Results in the Paper

B.3.1 Proof of Proposition 3.1

Proof. Denote Y(s)(t),△(s)(t) as the resulting value of Y(s),△(s) defined in Example 3.5 as

a function of the treatment assignment t.

Only if direction: τT (ĀY)′t1 > τT (ĀY)′t2 implies that 1′△(1)(t1) > 1′△(1)(t2). Since Ā

is fully connected, this implies that Ā△(1)(t1) > Ā△(1)(t2) (element-wise comparison). Since

Y(1)(t1)−△(1)(t1) = Y = Y(1)(t2)−△(1)(t2), the above implies ĀY(1)(t1) > ĀY(1)(t2). By

Assumption 3.4, this implies Y(2)(t1) > Y(2)(t2). Perform induction along this along and we

have Y(s)(t1) > Y(s)(t2) for all s. Since Y
∗
1 = lims Y(s)(t1) and Y∗

2 = limsY(s)(t2), it follows

thatY∗
1 ≥ Y∗

2. However, using the same argument, we can also show that△(s)(t1) > △(s)(t2)

for all s, which implies Y∗
1 > Y∗

2 by the infinite sum representation.

If direction: suppose τT (ĀY)′t1 ≤ τT (ĀY)′t2, the above proof shows that 1′Y∗
1 ≤ 1′Y∗

2,
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a contradiction.

B.3.2 Proof of Proposition 3.2

Proof. Write the knowledge equation in matrix form: Y = g(D,T,X,v) = g(ÃY,T,X,v)

where Ã is the row-normalized version of A. The existence and uniqueness of the reduced

form can be framed as the existence and uniqueness of the fixed point ofY = g(ÃY,T,X,v).

For some starting value Y(0), define Y(n) := g(ÃY(n−1),T,X,v).

By the mean-value theorem and boundedness of the derivative ∂Yi

∂Di
≤ κ < 1, we have

that for any i:

|g(ÃY, Ti, Xi, vi)− g(ÃY∗, Ti, Xi, vi)| = | ∂
∂D

g(ÃỸ, Ti, Xi, vi)Ãi(Y −Y∗)|

≤ κ∑
j Aij

|
∑
j

Aij(Yj − Y ∗
j )|

≤ κ∑
j Aij

∑
j

Aij|(Yj − Y ∗
j )|

≤ κ∑
j Aij

∑
j

Aij∥(Y −Y∗)∥∞ = κ∥(Y −Y∗)∥∞

This implies

∥g(ÃY,T,X,v)− g(ÃY∗,T,X,v)∥∞ ≤ κ∥(Y −Y∗)∥∞

is a contraction for any realization of T,X,v under the distance induced by the ℓ∞ norm.

By the Banach fixed point theorem, there is a unique fixed point.

Consider two treatment vectors T,T∗ such that Ti = T ∗
i for all i ̸= j and Tj = 0, T ∗

j = 1.

Denote the resulting knowledge as Y = r(T,X,v) and Y∗ = r(T∗,X,v). For two vectors

a,b, define a < b as ai ≤ bi for all i with strict inequality for at least one i. By definition,

Y = g(ÃY,T,X,v). By Assumption 3.3, Y < g(ÃY,T∗,X,v) := Y(1). By Assumption

3.4, Y(2) = g(ÃY(1),T,X,v) > g(ÃY,T,X,v) > Y. By induction, we can show that

Y(n) > Y for all n. As argued above, limn→∞ ∥Y(n)−Y∗∥∞ → 0, this implies that Y∗ ≥ Y.

By Assumption 3.3, Y < g(ÃY,T∗,X,v), which implies that Y∗ > Y.

The above proof only uses the fact that
∑

j Ãij = 1 and Ãij ≥ 0 and thus also holds for

any row-normalized matrix B with non-negative entries.

B.3.3 Proof of Proposition 4.1

Proof. Let E(T,X, A,v) := {Aki = Akj ∀k, Ti = 1, Tj = 0, Dj = Di = d,Xi = Xj = x}
denote the conditioning event.
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Substituting the additive separability structure in Assumption 4.1:

E[Yi − Yj|E(T,X, A,v)]

= ḡ(d, 1, x)− ḡ(d, 0, x) + E[vi − vj|E(T,X, A,v)]

To complete the proof, I apply Lemma B.3 to show that E[vi − vj|E(T,X, A,v)] = 0. To

this end, I show that the following holds:

E(T,X, A,v) = E ′(T,X, A,v−ij, h(vi, vj))

h(vi, vj) := vi + vj

which is equivalent to showingDi = Dj = d can be written as a restriction onT,X, A,v−ij, h(vi, vj).

This is because Di = Dj = d is the only restriction in E(T,X, A,v) that involves vi, vj. After
this, substituting vi = Yi, vj = Yj, T = W, (X, Ãi, Ãj) = B,v = Y, h(vi, vj) = h(Yi, Yj) in

Lemma B.3 yields the desired result.

For simplicity, consider first the case where nk = 2 for all k such that Aki = Akj = 1 (i.e.

all common neighbors of i, j have only two degrees). Then, conditional on other restrictions

in E(T,X, A,v), the event Di = Dj = d can be written as:

d = Di = Dj =
1

ni

∑
k:AkiAkj=1

ḡ(Dk, Tk, Xk, vk) (Aki = Akj for all k conditional on E(d, x))

=
1

ni

∑
k:AkiAkj=1

ḡ(ÃkiYi + ÃkjYj, Tk, Xk, vk) ( nk = 2)

=
1

ni

∑
k:AkiAkj=1

ḡ

(
1

nk

(vi + vj) +
1

nk

ḡ(d, 1, x) +
1

nk

ḡ(d, 0, x), Tk, Xk, vk

)
(Ãki = Ãkj =

1
nk

by assumption)

=
1

ni

∑
k:AkiAkj=1

ḡ

(
1

nk

h(vi, vj) +
1

nk

ḡ(d, 1, x) +
1

nk

ḡ(d, 0, x), Tk, Xk, vk

)
(h(vi, vj) := vi + vj)

This implies that Di = Dj = d can be written as a restriction on T,X, A,v−ij, h(vi, vj),

which is the desired result.

For the more general case, conditional on other restrictions in E(T,X, A,v), the event
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Di = Dj = d is equivalent to

nid =
∑

k:AkiAkj=1

ḡ

(
d′k +

1

nk

∑
q ̸=i,j

AkqYq, Tk, Xk, vk

)

d′k :=
1

nk

(ḡ(d, 1, x) + ḡ(d, 0, x) + vi + vj)

=
1

nk

(ḡ(d, 1, x) + ḡ(d, 0, x) + h(vi, vj))

As opposed to the nk = 2 case, there is an additional term 1
nk

∑
q ̸=i,j AkqYq which depends

on the knowledge of nodes linked to neither i nor j. We want to show that it is a function

of h(vi, vj) and T,X,v−ij.

Yk =

ḡ
(
d′k +

1
nk

∑
q ̸=i,j AkqYq, Tk, Xk, vk

)
Aki = Akj = 1

ḡ
(

1
nk

∑
q AkqYq, Tk, Xk, vk

)
Aki = Akj = 0

Since | ∂ḡ
∂D

| < κ < 1, this system has a unique reduced form that depend only on d′k and

{Xk, Tk, vk}k ̸=i,j as in the proof of Proposition 3.2. This implies that Di = Dj = d can be

written as a restriction on (h(vi + vj),v−ij,T,X).

B.3.4 Proof of Lemma 5.1

Proof. Define Λ as a diagonal matrix with entries Λii =
∂
∂d
g(Di, Ti, Xi). I present the proof

under the definition of

sij =
1

mink:nk>0 nk

∥A(ι(i)− ι(j))∥2

The result for the version of sij defined in Equation (22) follows immediately by the assump-

tion of maxk nk

mink nk
≤ C.

In the subsequent proof, it is assumed that sij > 0. If sij = 0, we have Aki = Akj for all

k and Proposition 4.1 shows that E[l(Di)(vi − vj)] = 0.

When Aki = Akj for all k, the identification argument in Proposition 4.1 shows that Di

depends on vi, vj only through the quantity vi + vj. In other words, ∂Di

∂vi
− ∂Di

∂vj
= 0. To

arrive at the desired result, I show in Step 1 that |∂Di

∂vi
− ∂Di

∂vj
| ≤ sij

1−κ
. In Step 2, I show that

|E[l(Di)(vi − vj)]| = O
( sij
1−κ

)
.

Step 1: The vector Y satisfies a system of nonlinear equations:

fi = Yi − g(
∑
j

ÃijYj, Ti, Xi)− vi = 0 ∀i
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Let J be the Jacobian matrix with ij-th entry ∂fi
∂Yj

. One can show that J = I − ΛÃ. J is

invertible since it is diagonal-dominant by Assumption 3.2. Let A(i, j) := {k : Aki ̸= Akj}.
The l-th entry of the vector ΛÃ(ι(i)− ι(j)) satisfies the following inequality:

|[ΛÃ(ι(i)− ι(j))]l| =
∣∣∣∣ 1nl

Λll(Ali − Alj)

∣∣∣∣
≤ κ

1

nl

1{Ali ̸= Alj} (|Λkk| ≤ κ by Assumption 3.2)

≤ κ
1

mink nk

1{Ali ̸= Alj} (definition of sij)

= κsij
1

|A(i, j)|
1{Ali ̸= Alj}

This implies that

|Ã′
i(ΛÃ)

s+1(ι(i)− ι(j))| = Ã′
i(ΛÃ)

s[ΛÃ(ι(i)− ι(j))]

≤ κsÃ′
iÃ

s|ΛÃ(ι(i)− ι(j))|

≤ κsÃ′
i1
∑
l

[|ΛÃ(ι(i)− ι(j))|]l

≤ κs
∑
l

κsij
1

|A(i, j)|
1{Ali ̸= Alj}

= κs+1sij

The first inequality follows from two separate argument. First |Ãv| ≤ Ã|v| (element-wise

comparison) for any vector v since Ã has non-negative entries (the absolute value is taken

with respect to each element in the vector). Second, |Λii| ≤ κ by Assumption 3.2. The second

inequality follows from the observation that Ãs is the s-th power of a Markov transition

probability matrix Ã. As a result, the k-the entry of the vector Ãv is bounded by [Ãsv]k ≤∑
j |vj| for any k and any vector v. In vector notation, this implies Ãsv ≤ 1

∑
j |vj|.

It follows that∣∣∣∣∂Di

∂vi
− ∂Di

∂vj

∣∣∣∣ = ∣∣∣∣Ã′
i

(
∂Y

∂vi
− ∂Y

∂vj

)∣∣∣∣
= |Ã′

iJ
−1(ι(i)− ι(j))| = |Ã′

i(I − ΛÃ)−1(ι(i)− ι(j))|
(Implicit Function Theorem)

=

∣∣∣∣∣Ã′
i

∞∑
l=0

(ΛÃ)l(ι(i)− ι(j))

∣∣∣∣∣
≤

∞∑
s=0

κssij =
sij

1− κ
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If maxk nk

mink nk
≤ C for some constant C, the above bound holds by observing that 1

mink nk
≤

C
min{ni,nj} .

Step 2: One can write Di as Di(vi, vi+ vj,v−ij,T,X, A). Since vi+ vj,v−ij,T,X, A will

be conditioned upon, we write it as Di(vi). Let D̄ = Di(
vi+vj

2
). Denote E as the conditioning

event vi + vj = v̄,X,T, A,v−ij

|E[l(Di)(vi − vj)|E ]| = |E[(l(Di)− l(D̄) + l(D̄))(vi − vj)|E ]|

= |E[(l(Di)− l(D̄))(vi − vj)|E ] + E[l(D̄)(vi − vj)|E ]|

= |E[(l(Di)− l(D̄))(vi − vj)|E ]| (Lemma B.3)

≤ E[|l(Di)− l(D̄)||vi − vj||E ]

≤ E

[
Lip(l)

∣∣∣∣∂Di

∂vi
− ∂Di

∂vj

∣∣∣∣ |vi||vi − vj||E
]

≤ Lip(l)
sij

1− κ
E[|vi||vi − vj||E ]

The law of iterated expectation then yields the desired results:

|E[l(Di)(vi − vj)|Ai, Aj, Xi, Xj]| ≤ E[|E[l(Di)(vi − vj)|Ai, Aj, Xi, Xj, E ]||Ai, Aj, Xi, Xj]

= E[|E[l(Di)(vi − vj)|E ]||Ai, Aj, Xi, Xj]

(The event E includes Ai, Aj, Xi, Xj)

≤ Lip(l)
sij

1− κ
E[E[|vi||vi − vj||E ]|Ai, Aj, Xi, Xj]

= Lip(l)
sij

1− κ
E[|vi||vi − vj||Ai, Aj, Xi, Xj]

≤ Lip(l)
sij

1− κ
E[v2i + |vivj||Ai, Aj, Xi, Xj]

(triangular inequality)

≤ Lip(l)
sij

1− κ
E[2v2i + v2j |Ai, Aj, Xi, Xj]

(Cauchy Schwarz inequality)

The desired result follows from the uniform boundedness of E[v2i |Ai, Xi].

B.3.5 Proof of Corollary 5.2

Proof. Define Λ̃ as a diagonal matrix with entries Λ̃ii =
1
ni

∂
∂d
g(Di, Ti, Xi). In the subsequent

proof, it is assumed that sij > 0. If sij = 0, we have Aki = Akj for all k and Proposition 4.1

shows that E[l(Di)(vi − vj)] = 0.

To arrive at the desired result, I show in Step 1 that |∂Di

∂vi
− ∂Di

∂vj
| ≤ sij

1−κ
. In Step 2, I show

that |E[l(Di)(vi − vj)]| = O
( sij
1−κ

)
.
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Step 1: The vector Y satisfies a system of nonlinear equations:

fi = Yi − g(
∑
j

ÃijYj, Ti, Xi)− vi = 0 ∀i

Let J be the Jacobian matrix with ij-th entry ∂fi
∂Yj

. One can show that J = I − Λ̃A. J is

invertible since it is diagonal-dominant by Assumption 3.2. Let A(i, j) := {k : Aki ̸= Akj}.
It follows that∣∣∣∣∂Di

∂vi
− ∂Di

∂vj

∣∣∣∣ = ∣∣∣∣Ã′
i

(
∂Y

∂vi
− ∂Y

∂vj

)∣∣∣∣
= |Ã′

iJ
−1(ι(i)− ι(j))| = |Ã′

i(I − Λ̃A)−1(ι(i)− ι(j))|
(Implicit Function Theorem)

=

∣∣∣∣∣Ã′
i

∞∑
l=0

(Λ̃A)l(ι(i)− ι(j))

∣∣∣∣∣
≤ |A′

i(ι(i)− ι(j))|+
∞∑
l=1

∣∣∣Ã′
i(Λ̃A)

l(ι(i)− ι(j))
∣∣∣

≤ |Aii − Aij|
ni

+
∞∑
l=1

∥Ãi∥2∥(Λ̃A)l(ι(i)− ι(j))∥2 (Cauchy-Schwarz inequality)

≤ |Aii − Aij|
ni

+
∞∑
l=1

∥Ãi∥2∥(Λ̃A)l−1∥∥A(ι(i)− ι(j))∥2

(definition of matrix norm)

≤ |Aii − Aij|
ni

+
∞∑
l=1

1
√
ni

∥Λ̃∥l−1∥A∥l−1∥(ι(i)− ι(j))∥2

(for two matrices C,D: ∥CD∥ ≤ ∥C∥∥D∥)

≤ |Aii − Aij|
ni

+
1

√
ni

∞∑
l=1

(
κ

mink nk

)l−1

∥A∥l−1∥A(ι(i)− ι(j))∥2

(by ∥Λ̃∥ ≤ κ
mink nk

)

≤ |Aii − Aij|
ni

+
1

√
ni

∞∑
l=1

(
κ

mink nk

)l−1

∥A∥l−1
√
|A(i, j)|

(by ∥A(ι(i)− ι(j))∥2 ≤
√
|A(i, j)|)

≤ 1

ni

+

√
|A(i, j)|
ni

1

1− ∥A∥ κ
mink nk

≤ sij +
√
sij

1

1− ∥A∥ κ
mink nk

If maxk nk

mink nk
≤ C for some constant C, the above bound holds by observing that 1

mink nk
≤
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C
min{ni,nj} .

Step 2: One can write Di as Di(vi, vi+ vj,v−ij,T,X, A). Since vi+ vj,v−ij,T,X, A will

be conditioned upon, we write it as Di(vi). Let D̄ = Di(
vi+vj

2
). Denote E as the conditioning

event vi + vj = v̄,X,T, A,v−ij

|E[l(Di)(vi − vj)|E ]| = |E[(l(Di)− l(D̄) + l(D̄))(vi − vj)|E ]|

= |E[(l(Di)− l(D̄))(vi − vj)|E ] + E[l(D̄)(vi − vj)|E ]|

= |E[(l(Di)− l(D̄))(vi − vj)|E ]| (Lemma B.3)

≤ E[|l(Di)− l(D̄)||vi − vj||E ]

≤ E

[
Lip(l)

∣∣∣∣∂Di

∂vi
− ∂Di

∂vj

∣∣∣∣ |vi||vi − vj||E
]

≤ Lip(l)

(
sij +

√
sij

1

1− ∥A∥ κ
mink nk

)
E[|vi||vi − vj||E ]

The rest of the proof follows in exactly the same way as in Lemma 5.1.

B.3.6 Proof of Theorem 1

Proof. I apply Theorem 3.1 in Chen (2007) to establish consistency of the proposed esti-

mator.

Condition 3.1: By the identification argument in Proposition 4.1,

q0 := τT (Di, Xi) = argmin
q∈Q

L(q) (45)

In addition, for any q such that d(q, q0) > ϵ, we have L(q) > ϵ. Condition 3.1 is satisfied

with δ(k) = 1 and g(ϵ) = ϵ.

Condition 3.2 and 3.4 are implied by Assumption 5.6.

Condition 3.3 holds since L(q) is continuous w.r.t in the L2 norm. Condition 3.3 (ii) is

implied by this continuity result since lim infk δ(k) > 0.

Condition 3.5 (i): I apply Theorem 2.1 in Newey (1991) to establish the condition.

Assumption 1 in Newey (1991) is implied by Assumption 5.6. Assumption 2 is the result of
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Lemma B.7.

L̂n(q; b)− L̂n(q̃; b) =
2

n

n∑
i=1

∑
j ̸=i

(Ti − Tj)(Yi − Yj)|Ti − Tj|[q̃(Di, Xi)− q(Di, Xi)]ωij

+
1

n

n∑
i=1

∑
j ̸=i

[q2(Di, Xi)− q̃2(Di, Xi)]ωij

≤ 2

n

n∑
i=1

∑
j ̸=i

(Ti − Tj)(Yi − Yj)|Ti − Tj|∥q − q̃∥∞ωij

+
1

n

n∑
i=1

∑
j ̸=i

∥q − q̃∥2∞ωij

=
2

n

n∑
i=1

∑
j ̸=i

[(Ti − Tj)(Yi − Yj) + 1]ωij∥q − q̃∥∞(1 + ∥q − q̃∥∞)

Let Bn := 4
n

∑n
i=1

∑
j ̸=i[(Ti − Tj)(Yi − Yj) + 1]ωij. Assumption 3A in Newey (1991) requires

that Bn = Op(1). To show this, notice that∣∣∣∣∣ 4n
n∑

i=1

∑
j ̸=i

(Ti − Tj)(Yi − Yj)ωij

∣∣∣∣∣ ≤ 8
1

n

n∑
i=1

∑
j ̸=i

|(Yi − Yj)ωij|

= 8
1

n

n∑
i=1

∑
j ̸=i

|(g(Di, Ti, Xi)− g(Dj, Tj, Xj) + vi − vj)ωij|

≤ 8
1

n

n∑
i=1

∑
j ̸=i

|(g(Di, Ti, Xi)− g(Dj, Tj, Xj))ωij|+ |(vi − vj)ωij|

≤ 16|ȳ|+ 8
1

n

n∑
i=1

∑
j ̸=i

|(vi − vj)ωij|

(By boundedness in Assumption 5.1 and
∑

j ωij = 1)

= Op(1) (By Lemma B.6)

In addition, by the norm inequality, ∥q − q̃∥∞ ≤ ∥q − q̃∥2 since Qk is a finite-dimensional

space. These imply that Assumption 3A in Newey (1991) is satisfied. Equicontinuity of L(q)

holds by the same argument as above. Assumption 3A and Assumption 1, 2 in Newey (1991)

implies the required conditions for Theorem 2.1 in the paper.

As pointed out in Chen (2007) (page 42), lim infk δ(k) > 0 implies that Condition 3.5

(iii) is automatically satisfied and Condition 3.5 (ii) is implied by Condition 3.5 (i).
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